Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 95(5-1): 052145, 2017 May.
Article in English | MEDLINE | ID: mdl-28618592

ABSTRACT

We show that, at the critical temperature, there is a class of Lee-Yang zeros of the partition function in a general scalar field theory, which location scales with the size of the system with a characteristic exponent expressed in terms of the isothermal critical exponent δ. In the thermodynamic limit the zeros belonging to this class condense to the critical point ζ=1 on the real axis in the complex fugacity plane while the complementary set of zeros (with Reζ<1) covers the unit circle. Although the aforementioned class degenerates to a single point for an infinite system, when the size is finite it contributes significantly to the partition function and reflects the self-similar structure (fractal geometry, scaling laws) of the critical system. This property opens up the perspective to formulate finite-size scaling theory in effective QCD, near the chiral critical point, in terms of the location of Lee-Yang zeros.

2.
Article in English | MEDLINE | ID: mdl-25768621

ABSTRACT

We study the classical dynamics of the Abelian-Higgs model in (1 + 1) space-time dimensions for the case of strongly broken gauge symmetry. In this limit the wells of the potential are almost harmonic and sufficiently deep, presenting a scenario far from the associated critical point. Using a multiscale perturbation expansion, the equations of motion for the fields are reduced to a system of coupled nonlinear Schrödinger equations. Exact solutions of the latter are used to obtain approximate analytical solutions for the full dynamics of both the gauge and Higgs field in the form of oscillons and oscillating kinks. Numerical simulations of the exact dynamics verify the validity of these solutions. We explore their persistence for a wide range of the model's single parameter, which is the ratio of the Higgs mass (m(H)) to the gauge-field mass (m(A)). We show that only oscillons oscillating symmetrically with respect to the "classical vacuum," for both the gauge and the Higgs field, are long lived. Furthermore, plane waves and oscillating kinks are shown to decay into oscillon-like patterns, due to the modulation instability mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...