Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
3.
PLoS One ; 4(4): e5316, 2009.
Article in English | MEDLINE | ID: mdl-19401760

ABSTRACT

BACKGROUND: The southern Levant (Israel, Palestinian Authority and Jordan) has been continuously and extensively populated by succeeding phases of human cultures for the past 15,000 years. The long human impact on the ancient landscape has had great ecological consequences, and has caused continuous and accelerating damage to the natural environment. The rich zooarchaeological data gathered at the area provide a unique opportunity to reconstruct spatial and temporal changes in wild species distribution, and correlate them with human demographic changes. METHODOLOGY: Zoo-archaeological data (382 animal bone assemblages from 190 archaeological sites) from various time periods, habitats and landscapes were compared. The bone assemblages were sorted into 12 major cultural periods. Distribution maps showing the presence of each ungulate species were established for each period. CONCLUSIONS: The first major ungulate extinction occurred during the local Iron Age (1,200-586 BCE), a period characterized by significant human population growth. During that time the last of the largest wild ungulates, the hartebeest (Alcelaphus buselaphus), aurochs (Bos primigenius) and the hippopotamus (Hippopotamus amphibius) became extinct, followed by a shrinking distribution of forest-dwelling cervids. A second major wave of extinction occurred only in the 19th and 20th centuries CE. Furthermore, a negative relationship was found between the average body mass of ungulate species that became extinct during the Holocene and their extinction date. It is thus very likely that the intensified human activity through habitat destruction and uncontrolled hunting were responsible for the two major waves of ungulate extinction in the southern Levant during the late Holocene.


Subject(s)
Artiodactyla , Extinction, Biological , Animals , Archaeology , Ecosystem , Fossils , History, Ancient , Humans , Israel , Jordan
4.
J Exp Biol ; 211(Pt 3): 459-65, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18204001

ABSTRACT

The rate at which an animal's tissues incorporate the isotopic composition of food determines the time window during which ecologists can discern diet changes. We investigated the effect of protein content in the diet on the incorporation rate of (15)N into the plasma proteins and blood cells of Yellow-vented bulbuls (Pycnonotus xanthopygos). Using model comparison analyses, we found that one-compartment models described incorporation data better than two-compartment models. Dietary protein content had a significant effect on the residence time of (15)N in plasma proteins and blood cells. The diet with the highest protein content led to a (15)N retention time of 21 and 5 days for cells and plasma, respectively. In contrast, average (15)N retention time in the cells and plasma of birds fed on the diet with the lowest protein was 31 and 7 days, respectively. The isotopic discrimination factor Delta(15)N=delta(15)N(tissues)-delta(15)N(diet) was also dependent on dietary protein content, and was lowest in birds fed the diet with the highest protein content. Blood, plasma and excreta were enriched in (15)N relative to diet. In contrast, ureteral urine was either significantly depleted of (15)N in birds fed the diet with the lowest protein content or did not differ in delta(15)N from the diets with the intermediate and high protein content. Thus, isotopic incorporation rates and tissue-to-diet discrimination factors cannot be considered fixed, as they depend on diet composition.


Subject(s)
Blood Cells/metabolism , Dietary Proteins/metabolism , Passeriformes/blood , Animals , Dietary Proteins/analysis , Kinetics , Nitrogen Isotopes , Time Factors
5.
J Comp Physiol B ; 176(7): 653-61, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16705445

ABSTRACT

Uric acid is the main nitrogenous waste product in birds but it is also known to be a potent antioxidant. Hominoid primates and birds lack the enzyme urate oxidase, which oxidizes uric acid to allantoin. Consequently, the presence of allantoin in their plasma results from non-enzymatic oxidation. In humans, the allantoin to uric acid ratio in plasma increases during oxidative stress, thus this ratio has been suggested to be an in vivo marker for oxidative stress in humans. We measured the concentrations of uric acid and allantoin in the plasma and ureteral urine of white-crowned sparrows (Zonotrichia leucophrys gambelii) at rest, immediately after 30 min of exercise in a hop/hover wheel, and after 1 h of recovery. The plasma allantoin concentration and the allantoin to uric acid ratio did not increase during exercise but we found a positive relationship between the concentrations of uric acid and allantoin in the plasma and in the ureteral urine in the three activity phases. In the plasma, the slope of the regression describing the above positive relationships was significantly higher immediately after activity. We suggest that the slope indicates the rate of uric acid oxidation and that during activity this rate increases as a result of higher production of free radicals. The present study demonstrates that allantoin is present in the plasma and in the ureteral urine of white-crowned sparrows and therefore might be useful as an indicator of oxidative stress in birds.


Subject(s)
Allantoin/metabolism , Oxidative Stress/physiology , Sparrows/physiology , Uric Acid/metabolism , Allantoin/blood , Allantoin/urine , Animals , Motor Activity , Oxygen Consumption , Physical Conditioning, Animal , Ureter , Uric Acid/blood , Uric Acid/urine
6.
Physiol Biochem Zool ; 78(2): 239-45, 2005.
Article in English | MEDLINE | ID: mdl-15778943

ABSTRACT

Nectar-feeding birds have remarkably low nitrogen requirements. These may be due either to adaptation to a low-protein diet or simply to feeding on a fluid diet that minimizes metabolic fecal nitrogen losses. We measured minimal nitrogen requirements (MNR) and total endogenous nitrogen loss (TENL) in the omnivorous European starling Sturnus vulgaris, fed on an artificial nectar-like fluid diet of varying concentrations of sugar and protein. The MNR and TENL of the birds were similar and even slightly higher than allometrically expected values for birds of the starlings' mass (140% and 103%, respectively). This suggests that the low measured nitrogen requirements of nectar-feeding birds are not simply the result of their sugary and watery diets but a physiological adaptation to the low nitrogen input. We also measured the effect of water and protein intake on the nitrogenous waste form in the excreta and ureteral urine in European starlings. Neither high water intake nor low protein intake increased the fraction of nitrogen excreted as ammonia. Ammonia was excreted at consistently low levels by the starlings, and its concentration was significantly higher in ureteral urine than in excreta. We hypothesize that ureteral ammonia was reabsorbed in the lower intestine, indicating a postrenal modification of the urine.


Subject(s)
Adaptation, Physiological , Dietary Proteins/metabolism , Dietary Sucrose/metabolism , Nitrogen/metabolism , Starlings/physiology , Ammonia/metabolism , Analysis of Variance , Animals , Dietary Proteins/analysis , Dietary Sucrose/analysis , Feces/chemistry , Nitrogen/urine , Starlings/metabolism , Ureter/metabolism
7.
J Exp Biol ; 208(Pt 6): 1025-34, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15767304

ABSTRACT

We measured minimal nitrogen requirements (MNR), total endogenous nitrogen loss (TENL) and the effect of protein and water intake on the nitrogenous waste composition in two frugivorous bird species: yellow-vented bulbuls Pycnonotus xanthopygos and Tristram's grackles Onychognathus tristrami. The nitrogen requirements of both species were much lower than expected for their body mass. The two species differed in the composition of the nitrogenous waste that they produced. The grackles were uricotelic, and the chemical composition of their nitrogenous waste products was relatively independent of water and protein intake. In contrast, the bulbuls were 'apparently ammonotelic'. Their ammonotely was related to low protein intake and high water flux, and was the result of post-renal urine modification. We suggest two non-exclusive mechanisms for the post-renal modification of urine in these birds: bacterial catabolism of uric acid and reabsorption of uric acid in the hindgut. As uric acid functions both as a nitrogenous waste product and as an antioxidant, birds might benefit from its reabsorption.


Subject(s)
Nitrogen/urine , Passeriformes/physiology , Quaternary Ammonium Compounds/urine , Uric Acid/urine , Analysis of Variance , Animals , Body Weight , Dietary Proteins/metabolism , Drinking , Israel , Passeriformes/urine , Species Specificity
8.
J Exp Biol ; 207(Pt 25): 4383-91, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15557024

ABSTRACT

Small nectarivorous vertebrates face a quandary. When feeding, they must eliminate prodigious quantities of water; however, when they are not feeding, they are susceptible to dehydration. We examined the role of the kidney in the resolution of this osmoregulatory dilemma. Broad-tailed hummingbirds (Selasphorus platycercus) displayed diurnal variation in glomerular filtration rate (GFR). During the morning, midday and evening, GFRs were 0.9+/-0.6, 1.8+/-0.4 and 2.3+/-0.5 ml h(-1), respectively. At midday, GFR increased linearly with increased water intake. During the evening, hummingbirds decreased renal fractional water reabsorption linearly with increased water intake. Broad-tailed hummingbirds appeared to cease GFR at night (-0.1+/-0.2 ml h(-1)) and decreased GFR in response to short-term ( approximately 1.5 h) water deprivation. GFR seems to be very responsive to water deprivation in hummingbirds. Although hummingbirds and other nectarivorous birds can consume astounding amounts of water, a phylogenetically explicit allometric analysis revealed that their diurnal GFRs are not different from the expectation based on body mass.


Subject(s)
Birds/physiology , Circadian Rhythm/physiology , Glomerular Filtration Rate/physiology , Kidney/physiology , Water-Electrolyte Balance/physiology , Analysis of Variance , Animals , Feeding Behavior/physiology , Models, Biological , Phylogeny , Water/metabolism
9.
New Phytol ; 156(2): 217-223, 2002 Nov.
Article in English | MEDLINE | ID: mdl-33873272

ABSTRACT

• We studied within-species variation in and interrelations among morphological and chemical traits of ripe Mediterranean buckthorn ( Rhamnus alaternus ) fruit, a bird-dispersed species. • Principal component analysis revealed that larger fruits tended to be relatively rich in nonstructural carbohydrates (NSC), water and P but poor in protein and most minerals. Small fruits tended to be relatively rich in protein, structural carbohydrates, K and Zn while intermediate size fruits tended to be rich in lipids, Mg and Ca. Variation in chemical traits (organic compounds and minerals) was typically much higher than in morphological traits (e.g. fruit size) with the exception of NSC and water content, which varied little. This discrepancy might be explained by differences in environmental conditions between plant microsites that imposed greater variability on fruit nutrient composition than on fruit-morphological traits; and by lower selective pressure by birds on fruit chemical traits than on morphological traits. • Secondary metabolite (emodin) concentration was positively correlated with concentrations of NSC, supporting the nutrient/toxin titration model, which predicts that high levels of secondary metabolites in fruits should be off set by high nutritional rewards for dispersers. • Emodin concentration in leaves was much higher than in fruit pulp, which may indicate its differential adaptive roles in seed dispersal and against herbivores.

SELECTION OF CITATIONS
SEARCH DETAIL
...