Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(23): 6897-6905, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38805366

ABSTRACT

Aluminum nanocrystals created by catalyst-driven colloidal synthesis support excellent plasmonic properties, due to their high level of elemental purity, monocrystallinity, and controlled size and shape. Reduction in the rate of nanocrystal growth enables the synthesis of highly anisotropic Al nanowires, nanobars, and singly twinned "nanomoustaches". Electron energy loss spectroscopy was used to study the plasmonic properties of these nanocrystals, spanning the broad energy range needed to map their plasmonic modes. The coupling between these nanocrystals and other plasmonic metal nanostructures, specifically Ag nanocubes and Au films of controlled nanoscale thickness, was investigated. Al nanocrystals show excellent long-term stability under atmospheric conditions, providing a practical alternative to coinage metal-based nanowires in assembled nanoscale devices.

2.
Elife ; 122023 Nov 20.
Article in English | MEDLINE | ID: mdl-37983176

ABSTRACT

Six transmembrane epithelial antigen of the prostate (STEAP) 1-4 are membrane-embedded hemoproteins that chelate a heme prosthetic group in a transmembrane domain (TMD). STEAP2-4, but not STEAP1, have an intracellular oxidoreductase domain (OxRD) and can mediate cross-membrane electron transfer from NADPH via FAD and heme. However, it is unknown whether STEAP1 can establish a physiologically relevant electron transfer chain. Here, we show that STEAP1 can be reduced by reduced FAD or soluble cytochrome b5 reductase that serves as a surrogate OxRD, providing the first evidence that STEAP1 can support a cross-membrane electron transfer chain. It is not clear whether FAD, which relays electrons from NADPH in OxRD to heme in TMD, remains constantly bound to the STEAPs. We found that FAD reduced by STEAP2 can be utilized by STEAP1, suggesting that FAD is diffusible rather than staying bound to STEAP2. We determined the structure of human STEAP2 in complex with NADP+ and FAD to an overall resolution of 3.2 Å by cryo-electron microscopy and found that the two cofactors bind STEAP2 similarly as in STEAP4, suggesting that a diffusible FAD is a general feature of the electron transfer mechanism in the STEAPs. We also demonstrated that STEAP2 reduces ferric nitrilotriacetic acid (Fe3+-NTA) significantly slower than STEAP1 and proposed that the slower reduction is due to the poor Fe3+-NTA binding to the highly flexible extracellular region in STEAP2. These results establish a solid foundation for understanding the function and mechanisms of the STEAPs.


Subject(s)
Electrons , Prostate , Male , Humans , NADP/metabolism , Cryoelectron Microscopy , Prostate/metabolism , Oxidoreductases/metabolism , Heme/metabolism , Antigens, Neoplasm
3.
J Biol Chem ; 299(7): 104897, 2023 07.
Article in English | MEDLINE | ID: mdl-37290533

ABSTRACT

Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid in a reaction catalyzed by a diiron center. The diiron center is well-coordinated by conserved histidine residues and is thought to remain with the enzyme. However, we find here that SCD1 progressively loses its activity during catalysis and becomes fully inactive after about nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center and that the addition of free ferrous ions (Fe2+) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe2+ in cells could regulate SCD1 activity and hence lipid metabolism.


Subject(s)
Biocatalysis , Cations, Divalent , Iron , Stearoyl-CoA Desaturase , Animals , Fatty Acids/chemistry , Fatty Acids/metabolism , Iron/chemistry , Iron/metabolism , Mammals , Stearoyl-CoA Desaturase/metabolism , Cations, Divalent/chemistry , Cations, Divalent/metabolism , Lipid Metabolism
4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993326

ABSTRACT

Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid and the reaction is catalyzed by a diiron center, which is well-coordinated by conserved histidine residues and is thought to remain with enzyme. However, we find that SCD1 progressively loses its activity during catalysis and becomes fully inactive after nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center, and that the addition of free ferrous ions (Fe 2+ ) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe 2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe 2+ in cells could regulate SCD1 activity, and hence lipid metabolism.

5.
J Am Chem Soc ; 144(44): 20183-20189, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36306527

ABSTRACT

Methods for generating solvated electrons─free electrons in solution─have focused primarily on alkali metal ionization or high-energy electrons or photons. Here we report the generation of solvated electrons by exciting the plasmon resonance of Al nanocrystals suspended in solution with visible light. Two chemical reactions were performed: a radical-addition reaction with the spin-trap 2-methyl-2-nitrosopropane, and a model cyclization reaction with the radical clock 6-bromohex-1-ene. A quantum efficiency of at least ∼1.1% for plasmon absorbed photon to solvated electron generation can be inferred from the measured radical clock reaction concentration. This study demonstrates a simple way to generate solvated electrons for driving reductive organic chemical reactions in a quantifiable and controlled manner.


Subject(s)
Electrons , Light
6.
Commun Biol ; 5(1): 956, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097052

ABSTRACT

Mammalian cytochrome b5 (cyt b5) and cytochrome b5 reductase (b5R) are electron carrier proteins for membrane-embedded oxidoreductases. Both b5R and cyt b5 have a cytosolic domain and a single transmembrane (TM) helix. The cytosolic domains of b5R and cyt b5 contain cofactors required for electron transfer, but it is not clear if the TM helix has function beyond being an anchor to the membrane. Here we show that b5R and cyt b5 form a stable binary complex, and so do cyt b5 and stearoyl-CoA desaturase-1 (SCD1). We also show that b5R, cyt b5 and SCD1 form a stable ternary complex. We demonstrate that the TM helices are required for the assembly of stable binary and ternary complexes where electron transfer rates are greatly enhanced. These results reveal a role of the TM helix in cyt b5 and b5R, and suggest that an electron transport chain composed of a stable ternary complex may be a general feature in membrane-embedded oxidoreductases that require cyt b5 and b5R.


Subject(s)
Cytochromes b , Electrons , Animals , Electron Transport , Mammals , Oxidoreductases
7.
Nano Lett ; 22(13): 5570-5574, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35737851

ABSTRACT

The synthesis of Al nanocrystals (Al NCs) is a rapidly expanding field, but there are few strategies for size and morphology control. Here we introduce a dual catalyst approach for the synthesis of Al NCs to control both NC size and shape. By using one catalyst that nucleates growth more rapidly than a second catalyst whose ligands affect NC morphology during growth, one can obtain both size and shape control of the resulting Al NCs. The combination of the two catalysts (1) titanium isopropoxide (TIP), for rapid nucleation, and (2) Tebbe's reagent, for specific facet-promoting growth, yields {100}-faceted Al NCs with tunable diameters between 35 and 65 nm. This dual-catalyst strategy could dramatically expand the possible outcomes for Al NC growth, opening the door to new controlled morphologies and a deeper understanding of earth-abundant plasmonic nanocrystal synthesis.


Subject(s)
Aluminum , Nanoparticles , Catalysis , Ligands , Nanoparticles/chemistry
8.
J Inorg Biochem ; 214: 111267, 2021 01.
Article in English | MEDLINE | ID: mdl-33099233

ABSTRACT

Nitric oxide (NO), carbon monoxide (CO), and oxygen (O2) are important physiological messengers whose concentrations vary in a remarkable range, [NO] typically from nM to several µM while [O2] reaching to hundreds of µM. One of the machineries evolved in living organisms for gas sensing is sensor hemoproteins whose conformational change upon gas binding triggers downstream response cascades. The recently proposed "sliding scale rule" hypothesis provides a general interpretation for gaseous ligand selectivity of hemoproteins, identifying five factors that govern gaseous ligand selectivity. Hemoproteins have intrinsic selectivity for the three gases due to a neutral proximal histidine ligand while proximal strain of heme and distal steric hindrance indiscriminately adjust the affinity of these three gases for heme. On the other hand, multiple-step NO binding and distal hydrogen bond donor(s) specifically enhance affinity for NO and O2, respectively. The "sliding scale rule" hypothesis provides clear interpretation for dramatic selectivity for NO over O2 in soluble guanylate cyclase (sGC) which is an important example of sensor hemoproteins and plays vital roles in a wide range of physiological functions. The "sliding scale rule" hypothesis has so far been validated by all experimental data and it may guide future designs for heme-based gas sensors.


Subject(s)
Carbon Monoxide/metabolism , Hemeproteins/metabolism , Nitric Oxide/metabolism , Oxygen/metabolism , Soluble Guanylyl Cyclase/metabolism , Carbon Monoxide/chemistry , Hemeproteins/chemistry , Nitric Oxide/chemistry , Oxygen/chemistry , Soluble Guanylyl Cyclase/chemistry
9.
Front Cell Neurosci ; 14: 603043, 2020.
Article in English | MEDLINE | ID: mdl-33363457

ABSTRACT

Intracerebral hemorrhage (ICH) is a particularly devastating event both because of the direct injury from space-occupying blood to the sequelae of the brain exposed to free blood components from which it is normally protected. Not surprisingly, the usual metabolic and energy pathways are overwhelmed in this situation. In this review article, we detail the complexity of red blood cell degradation, the contribution of eryptosis leading to hemoglobin breakdown into its constituents, the participants in that process, and the points at which injury can be propagated such as elaboration of toxic radicals through the metabolism of the breakdown products. Two prominent products of this breakdown sequence, hemin, and iron, induce a variety of pathologies including free radical damage and DNA breakage, which appear to include events independent from typical oxidative DNA injury. As a result of this confluence of damaging elements, multiple pathways of injury, cell death, and survival are likely engaged including ferroptosis (which may be the same as oxytosis but viewed from a different perspective) and senescence, suggesting that targeting any single cause will likely not be a sufficient strategy to maximally improve outcome. Combination therapies in addition to safe methods to reduce blood burden should be pursued.

10.
J Mol Biol ; 432(18): 5152-5161, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32470559

ABSTRACT

Stearoyl-CoA desaturase 1 (SCD1) is a membrane-embedded metalloenzyme that catalyzes the formation of a double bond on a saturated acyl-CoA. SCD1 has a diiron center and its proper function requires an electron transport chain composed of NADH (or NADPH), cytochrome b5 reductase (b5R), and cytochrome b5 (cyt b5). Since SCD1 is a key regulator in fat metabolism and is required for survival of cancer cells, there is intense interest in targeting SCD1 for various metabolic diseases and cancers. Crystal structures of human and mouse SCD1 were reported recently; however, both proteins have two zinc ions instead of two iron ions in the catalytic center, and as a result, the enzymes are inactive. Here we report a general approach for incorporating iron into heterologously expressed proteins in HEK293 cells. We produced mouse SCD1 that contains a diiron center and visualized its diiron center by solving its crystal structure to 3.5 Å. We assembled the entire electron transport chain using the purified soluble domains of cyt b5 and b5R, and the purified mouse SCD1, and we showed that three proteins coordinate to produce proper products. These results established an in vitro system that allows precise perturbations of the electron transport chain for the understanding of the catalytic mechanism in SCD1.


Subject(s)
Cytochrome-B(5) Reductase/metabolism , Cytochromes b5/metabolism , Stearoyl-CoA Desaturase/chemistry , Stearoyl-CoA Desaturase/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , HEK293 Cells , Humans , Iron/metabolism , Mice , Models, Molecular , Protein Conformation , Protein Domains , Sf9 Cells , Stearoyl-CoA Desaturase/genetics , Zinc/metabolism
11.
Nature ; 578(7794): 273-277, 2020 02.
Article in English | MEDLINE | ID: mdl-32025029

ABSTRACT

Synucleinopathies are neurodegenerative diseases that are associated with the misfolding and aggregation of α-synuclein, including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy1. Clinically, it is challenging to differentiate Parkinson's disease and multiple system atrophy, especially at the early stages of disease2. Aggregates of α-synuclein in distinct synucleinopathies have been proposed to represent different conformational strains of α-synuclein that can self-propagate and spread from cell to cell3-6. Protein misfolding cyclic amplification (PMCA) is a technique that has previously been used to detect α-synuclein aggregates in samples of cerebrospinal fluid with high sensitivity and specificity7,8. Here we show that the α-synuclein-PMCA assay can discriminate between samples of cerebrospinal fluid from patients diagnosed with Parkinson's disease and samples from patients with multiple system atrophy, with an overall sensitivity of 95.4%. We used a combination of biochemical, biophysical and biological methods to analyse the product of α-synuclein-PMCA, and found that the characteristics of the α-synuclein aggregates in the cerebrospinal fluid could be used to readily distinguish between Parkinson's disease and multiple system atrophy. We also found that the properties of aggregates that were amplified from the cerebrospinal fluid were similar to those of aggregates that were amplified from the brain. These findings suggest that α-synuclein aggregates that are associated with Parkinson's disease and multiple system atrophy correspond to different conformational strains of α-synuclein, which can be amplified and detected by α-synuclein-PMCA. Our results may help to improve our understanding of the mechanism of α-synuclein misfolding and the structures of the aggregates that are implicated in different synucleinopathies, and may also enable the development of a biochemical assay to discriminate between Parkinson's disease and multiple system atrophy.


Subject(s)
Multiple System Atrophy/diagnosis , Parkinson Disease/diagnosis , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/chemistry , Amyloid/chemistry , Brain Chemistry , Circular Dichroism , Endopeptidase K/metabolism , Humans , Multiple System Atrophy/cerebrospinal fluid , Parkinson Disease/cerebrospinal fluid , Protein Conformation , Protein Denaturation , Protein Folding , Spectroscopy, Fourier Transform Infrared , alpha-Synuclein/classification , alpha-Synuclein/toxicity
12.
Prog Neurobiol ; 184: 101716, 2020 01.
Article in English | MEDLINE | ID: mdl-31604111

ABSTRACT

The complexity of Alzheimer's disease (AD) complicates the search for effective treatments. While the key roles of pathologically modified proteins has occupied a central role in hypotheses of the pathophysiology, less attention has been paid to the potential role for transition metals overload, subsequent oxidative stress, and tissue injury. The association of transition metals, the major focus heretofore iron and amyloid, the same can now be said for the likely pathogenic microtubular associated tau (MAPT). This review discusses the interplay between iron, pathologically modified tau and oxidative stress, and connects many related discoveries. Basic principles of the transition to pathological MAPT are discussed. Iron, its homeostatic mechanisms, the recently described phenomenon of ferroptosis and purported, although still controversial roles in AD are reviewed as well as considerations to overcome existing hurdles of iron-targeted therapeutic avenues that have been attempted in AD. We summarize the involvement of multiple pathological pathways at different disease stages of disease progression that supports the potential for a combinatorial treatment strategy targeting multiple factors.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cellular Senescence/physiology , Ferroptosis/physiology , Iron Chelating Agents/therapeutic use , Iron/metabolism , Reactive Oxygen Species/metabolism , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/drug effects , Animals , Cellular Senescence/drug effects , Ferroptosis/drug effects , Humans , Iron/toxicity , tau Proteins/drug effects
13.
ACS Nano ; 13(10): 11203-11213, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31509380

ABSTRACT

The superoxide dismutase-like activity of poly(ethylene glycolated) hydrophilic carbon clusters (PEG-HCCs), anthracite and bituminous graphene quantum dots (PEG-aGQDs and PEG-bGQDs, respectively), and two fullerene carbon nanozymes, tris malonyl-C60 fullerene (C3) and polyhydroxylated-C60 fullerene (C60-OHn), were compared using direct optical stopped-flow kinetic measurements, together with three native superoxide dismutases (SODs), CuZnSOD, MnSOD, and FeSOD, at both pH 12.7 and 8.5. Computer modeling including both SOD catalytic steps and superoxide self-dismutation enabled the best choice of catalyst concentration with minimal contribution to the observed kinetic change from the substrate self-dismutation. Biexponential fitting to the kinetic data ranks the rate constant (M-1 s-1) in the order of PEG-HCCs > CuZnSOD ≈ MnSOD ≈ PEG-aGQDs ≈ PEG-bGQDs > FeSOD ≫ C3 > C60-OHn at pH 12.7 and MnSOD > CuZnSOD ≈ PEG-HCCs > FeSOD > PEG-aGQDs ≈ PEG-bGQDs ≫ C3 ≈ C60-OHn at pH 8.5. Nonlinear regression of the kinetic model above yielded the same ranking as the biexponential fit, but provided better mechanistic insight. The data obtained by freeze-quench EPR direct assay at pH 12.7 also yield the same ranking as stopped-flow data. This is a necessary assessment of a panel of proclaimed carbon nano SOD mimetics using the same two direct methods, revealing a dramatic, 3-4 orders of magnitude difference in SOD activity between PEG-HCCs/PEG-GQDs from soluble fullerenes.


Subject(s)
Antioxidants/chemistry , Nanocomposites/chemistry , Superoxide Dismutase/chemistry , Superoxides/metabolism , Carbon/chemistry , Catalysis , Fullerenes , Graphite/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Polyethylene Glycols/chemistry
14.
ACS Nano ; 13(8): 9682-9691, 2019 Aug 27.
Article in English | MEDLINE | ID: mdl-31397561

ABSTRACT

Of the many plasmonic nanoparticle geometries that have been synthesized, nanocubes have been of particular interest for creating nanocavities, facilitating plasmon coupling, and enhancing phenomena dependent upon local electromagnetic fields. Here we report the straightforward colloidal synthesis of single-crystalline {100} terminated Al nanocubes by decomposing AlH3 with Tebbe's reagent in tetrahydrofuran. The size and shape of the Al nanocubes is controlled by the reaction time and the ratio of AlH3 to Tebbe's reagent, which, together with reaction temperature, establish kinetic control over Al nanocube growth. Al nanocubes possess strong localized field enhancements at their sharp corners and resonances highly amenable to coupling with metallic substrates. Their native oxide surface renders them extremely air stable. Chemically synthesized Al nanocubes provide an earth-abundant alternative to noble metal nanocubes for plasmonics and nanophotonics applications.

15.
Nanoscale ; 11(22): 10791-10807, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31134256

ABSTRACT

Previously, our group reported on the promising efficacy of poly(ethylene glycol)-hydrophilic carbon clusters (PEG-HCCs) to work as broadly active and high capacity antioxidants in brain ischemia and injury models including stroke and traumatic brain injury coupled with hemorrhagic shock. PEG-HCCs are a carbon nanomaterial derived from harsh oxidation of single wall carbon nanotubes and covalently modified with poly(ethylene glycol). They retain no tubular remnants and are composed of a highly oxidized carbon core functionalized with epoxy, peroxyl, quinone, ketone, carboxylate, and hydroxyl groups. HCCs are the redox active carbon core of PEG-HCCs, which have a broad reduction potential range starting at +200 mV and extending to -2 V. Here we describe a new property of these materials: the ability to catalytically transfer electrons between key surrogates and proteins of the mitochondrial electron transport complex in a catalytic fashion consistent with the concept of a nanozyme. The estimated reduction potential of PEG-HCCs is similar to that of ubiquinone and they enabled the catalytic transfer of electrons from low reduction potential species to higher reduction electron transport complex constituents. PEG-HCCs accelerated the reduction of resazurin (a test indicator of mitochondrial viability) and cytochrome c by NADH and ascorbic acid in solution. Kinetic experiments suggested a transient tertiary complex. Electron paramagnetic resonance demonstrated NADH increased the magnitude of PEG-HCCs' intrinsic radical, which then reduced upon subsequent addition of cytochrome c or resazurin. Deconvolution microscopy identified PEG-HCCs in close proximity to mitochondria after brief incubation with cultured SHSY-5Y human neuroblastoma cells. Compared to methylene blue (MB), considered a prototypical small molecule electron transport shuttle, PEG-HCCs were more protective against toxic effects of hydrogen peroxide in vitro and did not demonstrate impaired cell viability as did MB. PEG-HCCs were protective in vitro when cells were exposed to sodium cyanide, a mitochondrial complex IV poison. Because mitochondria are a major source of free radicals in pathology, we suggest that this newly described nanozyme action helps explain their in vivo efficacy in a range of injury models. These findings may also extend their use to mitochondrial disorders.


Subject(s)
Cytochromes c/metabolism , Hydrogen Peroxide/metabolism , Mitochondria/metabolism , NAD/metabolism , Nanotubes, Carbon/chemistry , Ascorbic Acid/pharmacology , Catalysis , Electron Spin Resonance Spectroscopy , Electron Transport/drug effects , Humans , Oxidation-Reduction/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
16.
ACS Appl Mater Interfaces ; 11(18): 16815-16821, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30995006

ABSTRACT

Graphene quantum dots (GQDs) have recently been employed in various fields including medicine as antioxidants, primarily because of favorable biocompatibility in comparison to common inorganic quantum dots, although the structural features that lead to the biological activities of GQDs are poorly understood. Here, we report that coal-derived GQDs and their poly(ethylene glycol)-functionalized derivatives serve as efficient antioxidants, and we evaluate their electrochemical, chemical, and in vitro biological activities.


Subject(s)
Antioxidants/chemistry , Biocompatible Materials/chemistry , Coal , Graphite/chemistry , Antioxidants/pharmacology , Biocompatible Materials/pharmacology , Graphite/pharmacology , Humans , Oxidation-Reduction , Polyethylene Glycols/chemistry , Quantum Dots/chemistry , Superoxide Dismutase/chemistry
17.
J Am Chem Soc ; 141(4): 1716-1724, 2019 01 30.
Article in English | MEDLINE | ID: mdl-30612425

ABSTRACT

The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH3 in Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti3+-AlH3 complexes. Proton nuclear magnetic resonance spectroscopy indicates isopropoxy ligands are removed from Ti by Al, producing aluminum(III) isopropoxide and low-valent Ti3+ catalysts. These Ti3+ species catalyze elimination of H2 from AlH3 inducing the polymerization of AlH3 into colloidally unstable low-valent aluminum hydride clusters. These clusters coalesce and grow while expelling H2 to form colloidally stable Al nanocrystals. The colloidal stability of the Al nanocrystals and their size is determined by the molecular structure and density of coordinating atoms in the reaction, which is controlled by choice of solvent composition.


Subject(s)
Aluminum/chemistry , Metal Nanoparticles/chemistry , Colloids , Ligands , Models, Molecular , Molecular Conformation , Solvents/chemistry
18.
RSC Adv ; 9(46): 27042-27049, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-35528574

ABSTRACT

1,4-dioxane, commonly used as a solvent stabilizer and industrial solvent, is an environmental contaminant and probable carcinogen. In this study, we explored the concept of using metal oxides to activate H2O2 catalytically at neutral pH in the dark for 1,4-dioxane degradation. Based on batch kinetics measurements, materials that displayed the most suitable characteristics (high 1,4-dioxane degradation activity and high H2O2 consumption efficiency) were ZrO2, WO x /ZrO2, and CuO. In contrast, materials like TiO2, WO3, and aluminosilicate zeolite Y exhibited both low 1,4-dioxane degradation and H2O2 consumption activities. Other materials (e.g., Fe2O3 and CeO2) consumed H2O2 rapidly, however 1,4-dioxane degradation was negligible. The supported metal oxide WO x /ZrO2 was the most active for 1,4-dioxane degradation and had higher H2O2 consumption efficiency compared to ZrO2. In situ acetonitrile poisoning and FTIR spectroscopy results indicate different surface acid sites for 1,4-dioxane and H2O2 adsorption and reaction. Electron paramagnetic resonance measurements indicate that H2O2 forms hydroxyl radicals (˙OH) in the presence of CuO, and unusually, forms superoxide/peroxyl radicals (˙O2 -) in the presence of WO x /ZrO2. The identified material properties suggest metal oxides/H2O2 as a potential advanced oxidation process in the treatment of 1,4-dioxane and other recalcitrant organic compounds.

19.
Adv Mater ; 30(50): e1803869, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30368916

ABSTRACT

The growing demand for sustainable and off-grid energy storage is reviving the attempts to use Li metal as the anode in the next generation of batteries. However, the use of Li anodes is hampered due to the growth of Li dendrites upon charging and discharging, which compromises the life and safety of the battery. Here, it is shown that lithiated multiwall carbon nanotubes (Li-MWCNTs) act as a controlled Li diffusion interface that suppresses the growth of Li dendrites by regulating the Li+ ion flux during charge/discharge cycling at current densities between 2 and 4 mA cm-2 . A full Li-S cell is fabricated to showcase the versatility of the protected Li anode with the Li-MWCNT interface, where the full cells could support pulse discharges at high currents and over 450 cycles at different rates with coulombic efficiencies close to 99.9%. This work indicates that carbon materials in lithiated forms can be an effective and simple approach to the stabilization of Li metal anodes.

20.
Front Neurol ; 9: 199, 2018.
Article in English | MEDLINE | ID: mdl-29686642

ABSTRACT

INTRODUCTION: While oxidative stress can be measured during transient cerebral ischemia, antioxidant therapies for ischemic stroke have been clinically unsuccessful. Many antioxidants are limited in their range and/or capacity for quenching radicals and can generate toxic intermediates overwhelming depleted endogenous protection. We developed a new antioxidant class, 40 nm × 2 nm carbon nanoparticles, hydrophilic carbon clusters, conjugated to poly(ethylene glycol) termed PEG-HCCs. These particles are high-capacity superoxide dismutase mimics, are effective against hydroxyl radical, and restore the balance between nitric oxide and superoxide in the vasculature. Here, we report the effects of PEG-HCCs administered during reperfusion after transient middle cerebral artery occlusion (tMCAO) by suture in the rat under hyperglycemic conditions. Hyperglycemia occurs in one-third of stroke patients and worsens clinical outcome. In animal models, this worsening occurs largely by accelerating elaboration of reactive oxygen species (ROS) during reperfusion. METHODS: PEG-HCCs were studied for their protective ability against hydrogen peroxide in b.End3 brain endothelial cell line and E17 primary cortical neuron cultures. In vivo, hyperglycemia was induced by streptozotocin injection 2 days before tMCAO. 58 Male Sprague-Dawley rats were analyzed. They were injected IV with PBS or PEG-HCCs (4 mg/kg 2×) at the time of recanalization after either 90- or 120-min occlusion. Rats were survived for up to 3 days, and infarct volume characteristics and neurological functional outcome (modified Bederson Score) were assessed. RESULTS: PEG-HCCs were protective against hydrogen peroxide in both culture models. In vivo improvement was found after PEG-HCCs with 90-min ischemia with reduction in infarct size (42%), hemisphere swelling (46%), hemorrhage score (53%), and improvement in Bederson score (70%) (p = 0.068-0.001). Early high mortality in the 2-h in the PBS control group precluded detailed analysis, but a trend was found in improvement in all factors, e.g., reduction in infarct volume (48%; p = 0.034) and a 56% improvement in Bederson score (p = 0.055) with PEG-HCCs. CONCLUSION: This nano-antioxidant showed some improvement in several outcome measures in a severe model of tMCAO when administered at a clinically relevant time point. Long-term studies and additional models are required to assess potential for clinical use, especially for patients hyperglycemic at the time of their stroke, as these patients have the worst outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...