Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37923367

ABSTRACT

In this study, we synthesized a series of four large-band gap small molecule acceptors with side-chain engineering of the dithieno-pyrrolo-fused pentacyclic benzotriazole (BZTTP or Y1 core) or the fused-ring dithienothiophene-pyrrolobenzothiadiazole (TPBT or Y6 core) with difluoro-indene-dione (IO2F) or dichloro-indene-dione (IO2Cl) end groups to form Y1-IO2F, Y1-IO2Cl, Y6-IO2F, and Y6-IO2Cl acceptors, respectively, for blending with poly(3-hexyl thiophene) (P3HT) for bulk heterojunction organic photovoltaics. The complementary UV-vis absorption spectra of these small molecules and P3HT along with their offset energy bands allow broad absorption and effective electron transfer. Through synchrotron wide-angle X-ray scattering (WAXS) analyses and contact angle measurements, we found that the blend of the small molecule Y6-IO2F (having a TPBT core) and P3HT achieves an optimum morphology that balances their crystallinity and miscibility, among those of these four blends, leading to a substantial enhancement in the short-circuit current density and thus power conversion efficiency (PCE) in their devices. For example, the P3HT:Y6-IO2F (w/w: 1/1.2) device exhibited a champion PCE of 10.5% with a short current density (Jsc) value of 15.9 mA/cm2 as compared to the P3HT:Y1-IO2F device having a PCE of 2.2% with a Jsc value of 5.7 mA/cm2 because of the higher Y6-IO2F (with TPBT core) molecular packing that facilitated carrier transport in the devices. The enhanced thermal stability exhibited by the devices incorporating Y6-IO2F and Y6-IO2Cl, as compared to that of Y1-IO2F and Y1-IO2Cl devices, is also due to the more planar TPBT core structure, while the photostability of devices incorporating Y6-IO2Cl and Y1-IO2Cl is better than that of devices incorporating Y6-IO2F and Y1-IO2F, owing to more photostable chemical structures. These results present an outstanding performance for P3HT-based organic solar cells. Moreover, these small molecule blends are processed with an environmentally friendly solvent tetrahydrofuran, demonstrating both the sustainability and commercial viability of these types of organic photovoltaics.

2.
ACS Appl Mater Interfaces ; 14(33): 37990-38003, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35904802

ABSTRACT

In this study, we synthesized four new A-DA'D-A acceptors (where A and D represent acceptor and donor chemical units) incorporating perylene diimide units (A') as their core structures and presenting various modes of halogenation and substitution of the functional groups at their end groups (A). In these acceptors, by fusing dithiophenepyrrole (DTP) moieties (D) to the helical perylene diimide dimer (hPDI) to form fused-hPDI (FhPDI) cores, we could increase the D/A' oscillator strength in the cores and, thus, the intensity of intramolecular charge transfer (ICT), thereby enhancing the intensity of the absorption bands. With four different end group units─IC2F, IC2Cl, IO2F, and IO2Cl─tested, each of these acceptor molecules exhibited different optical characteristics. Among all of these systems, the organic photovoltaic device incorporating the polymer PCE10 blended with the acceptor FhPDI-IC2F (1:1.1 wt %) had the highest power conversion efficiency (PCE) of 9.0%; the optimal PCEs of PCE10:FhPDI-IO2F, PCE10:FhPDI-IO2Cl, and PCE10:FhPDI-IC2Cl (1:1.1 wt %) devices were 5.2, 4.7, and 7.7%, respectively. The relatively high PCE of the PCE10:FhPDI-IC2F device resulted primarily from the higher absorption coefficients of the FhPDI-IC2F acceptor, lower energy loss, and more efficient charge transfer; the FhPDI-IC2F system experienced a lower degree of geminate recombination─as a result of improved delocalization of π-electrons along the acceptor unit─relative to that of the other three acceptors systems. Thus, altering the end groups of multichromophoric PDI units can increase the PCEs of devices incorporating PDI-derived materials and might also be a new pathway for the creation of other valuable fused-ring derivatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...