Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 998707, 2022.
Article in English | MEDLINE | ID: mdl-36388520

ABSTRACT

Potato common scab, which is mainly caused by the bacterium Streptomyces scabies, occurs in key potato growing regions worldwide. It causes necrotic or corky symptoms on potato tubers and decreases the economic value of potato. At present, there is no recommended chemical or biological control for combating potato common scab in Taiwan. It can only reduce the occurrence by cultivation control, but the efficacy is limited. Previously we found that Bacillus amyloliquefaciens Ba01 could control potato common scab in pot assay and in the field. The potential anti-S. scabies mechanism was associated with surfactin secretion, but further molecular dissection was not conducted. Thus, in this study we aimed to determine whether surfactin is the main compound active against S. scabies by knocking out the srf gene cluster in Ba01. The cloning plasmid pRY1 was transformed to Ba01 by electroporation for in-frame deletion. Two independent Δsrf mutants were obtained and confirmed by specific primers and mass spectrometry. The swarming ability and S. scabies inhibition was significantly decreased (P<0.001) in Δsrf mutants. The swarming ability of Δsrf mutants could be restored by the addition of surfactin. Furthermore, we found that Ba01 formed wrinkled biofilm in MSgg liquid medium, while Δsrf mutants formed biofilm abnormally. Furthermore, the α-amylase, protease and phosphate-solubilizing ability of Δsrf mutants was decreased, and the mutants could not inhibit the growth and sporulation of S. scabies on potato tuber slices. In conclusion, srf gene cluster of B. amyloliquefaciens Ba01 is responsible for the secretion of surfactin and inhibition of S. scabies.

2.
PeerJ ; 10: e13409, 2022.
Article in English | MEDLINE | ID: mdl-35642199

ABSTRACT

Background: Banana bunchy top virus (BBTV), cucumber mosaic virus (CMV) and banana streak virus (BSV) are important banana viruses, there are possible infections frequently with several viruses in field. Since the viruses are readily trasmitted in vegetative propagules, which pose a threat to banana production in banana-growing areas. Methods: A multiplex polymerase chain reaction (PCR) protocol combined with LiquiChip analysis to identify BSV, BBTV, and CMV, with consistent amplification of plant ubiquitin (UBQ), the banana plant messenger RNA used as a procedural control. Multiplex reverse transcription (RT)-PCR amplicons were extended by allele-specific primers, followed by hybridization with carboxylated microspheres containing unique fluorescent oligonucleotides, which were detected using the LiquiChip 200 workstation. Results: In this study, we aimed to develop a rapid, sensitive, and simultaneous detection method for BSV, BBTV, and CMV using a bead-based multiplex assay that can be applied in routine diagnosis. We demonstrated that this detection system was extremely efficient and highly specialized for differentiating individual in a mixture of viruses while being ten times more sensitive than traditional RT-PCR. The development of this method makes it feasible to detect banana viruses in field collected leaf samples.


Subject(s)
Babuvirus , Cucumovirus , Cytomegalovirus Infections , Musa , Plant Diseases , Multiplex Polymerase Chain Reaction , Cucumovirus/genetics
3.
Micromachines (Basel) ; 10(12)2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31801238

ABSTRACT

Paper-based technologies have been drawing increasing attentions in the biosensor field due to their economical, ecofriendly, and easy-to-fabricate features. In this paper, we present a time-delay valve mechanism to automate a series of procedures for conducting competitive enzyme-linked immunosorbent assay (ELISA) on a paper-based device. The mechanism employs a controllable time-delay valve, which has surfactants to dissolve the hydrophobic barriers, in a fluid pathway. The valves can regulate the liquid and sequentially deliver the sample flow for automating ELISA procedures in microchannels. Competitive ELISA is achieved in a single step once the sample, or small molecule pesticide (e.g., Imidacloprid), is applied onto the paper-based device with a comparable sensitivity to plate-based competitive ELISA. The results further demonstrate the appositeness of using paper-based devices with the valve designs for on-the-go ELISA detection in agriculture and biomedical applications.

4.
PLoS One ; 13(4): e0196520, 2018.
Article in English | MEDLINE | ID: mdl-29698535

ABSTRACT

Potato common scab, which is caused by soil-borne Streptomyces species, is a severe plant disease that results in a significant reduction in the economic value of potatoes worldwide. Due to the lack of efficacious pesticides, crop rotations, and resistant potato cultivars against the disease, we investigated whether biological control can serve as an alternative approach. In this study, multiple Bacillus species were isolated from healthy potato tubers, and Bacillus amyloliquefaciens Ba01 was chosen for further analyses based on its potency against the potato common scab pathogen Streptomyces scabies. Ba01 inhibited the growth and sporulation of S. scabies and secreted secondary metabolites such as surfactin, iturin A, and fengycin with potential activity against S. scabies as determined by imaging mass spectrometry. In pot assays, the disease severity of potato common scab decreased from 55.6 ± 11.1% (inoculated with S. scabies only) to 4.2 ± 1.4% (inoculated with S. scabies and Ba01). In the field trial, the disease severity of potato common scab was reduced from 14.4 ± 2.9% (naturally occurring) to 5.6 ± 1.1% after Ba01 treatment, representing evidence that Bacillus species control potato common scab in nature.


Subject(s)
Bacillus amyloliquefaciens/metabolism , Biological Control Agents/metabolism , Plant Diseases/prevention & control , Solanum tuberosum/microbiology , Bacillus amyloliquefaciens/classification , Bacillus amyloliquefaciens/genetics , Biological Control Agents/chemistry , Biological Control Agents/pharmacology , Disk Diffusion Antimicrobial Tests , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/pharmacology , Mass Spectrometry , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Phylogeny , Plant Diseases/microbiology , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/metabolism , Solanum tuberosum/growth & development , Streptomyces/drug effects , Streptomyces/growth & development
5.
Biosens Bioelectron ; 75: 88-95, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26298639

ABSTRACT

The widespread and intensive use of neonicotinoid insecticides induces negative cascading effects on ecosystems. It is desirable to develop a portable sensitive sensing platform for on-site screening of high-risk pesticides. We combined an indirect competitive immunoassay, highly sensitive surface plasmon resonance (SPR) biochip and a simple portable imaging setup for label-free detection of imidacloprid pesticides. The SPR biochip consists of several capped nanoslit arrays with different periods which form a spectral image on the chip. The qualitative and semiquantitative analyses of pesticides can be directly observed from the spot shift on the chip. The precise semiquantitative analyses can be further completed by using image processing in a smartphone. We demonstrate simultaneous detection of four different concentrations of imidacloprid pesticides. The visual detection limit is about 1ppb, which is well below the maximum residue concentration permitted by law (20ppb). Compared to the one-step strip assay, the proposed chip is capable of performing semiquantitative analyses and multiple detection. Compared to the enzyme-linked immunosorbent assay, our method is label-free and requires simple washing steps and short reaction time. In addition, the label-free chip has a comparable sensitivity but wider working range than those labeling techniques.


Subject(s)
Biosensing Techniques , Imidazoles/isolation & purification , Nitro Compounds/isolation & purification , Pesticides/isolation & purification , Smartphone , Humans , Imidazoles/toxicity , Lab-On-A-Chip Devices , Neonicotinoids , Nitro Compounds/toxicity , Pesticides/toxicity , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...