Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Infection ; 52(3): 955-983, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38133713

ABSTRACT

PURPOSE: The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles. METHODS: Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay. RESULTS: The SARS-CoV-2 nucleocapsid protein, rather than the spike protein, triggers lung epithelial A549 cells to express IP-10, RANTES, IL-16, MIP-1α, basic FGF, eotaxin, IL-15, PDGF-BB, TRAIL, VEGF-A, and IL-5. Additionally, serum CTACK, basic FGF, GRO-α, IL-1α, IL-1RA, IL-2Rα, IL-9, IL-15, IL-16, IL-18, IP-10, M-CSF, MIF, MIG, RANTES, SCGF-ß, SDF-1α, TNF-α, TNF-ß, VEGF, PDGF-BB, TRAIL, ß-NGF, eotaxin, GM-CSF, IFN-α2, INF-γ, and MCP-1 levels were considerably increased in patients with COVID-19. Among them, patients with pneumonia had higher serum IP-10 and M-CSF levels than patients without. Patients requiring less than 3 weeks to show negative COVID-19 tests after contracting COVID-19 had higher serum IP-10 levels than the remaining patients. CONCLUSION: Our study revealed that nucleocapsid protein, lung epithelial cells, and IP-10 may be potential targets for the development of new strategies to prevent, or control, severe COVID-19.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Cytokines , Epithelial Cells , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/immunology , COVID-19/blood , Spike Glycoprotein, Coronavirus/immunology , SARS-CoV-2/immunology , Cytokines/blood , Female , Male , Middle Aged , Epithelial Cells/virology , Epithelial Cells/immunology , Coronavirus Nucleocapsid Proteins/immunology , Aged , A549 Cells , Lung/pathology , Lung/immunology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/blood , Adult , Antibodies, Viral/blood , Phosphoproteins
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38139184

ABSTRACT

The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced ß-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Peptide Hydrolases/metabolism , Degrons , Endopeptidases/metabolism , ATP-Dependent Proteases/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism
3.
Molecules ; 28(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37513282

ABSTRACT

Pseudomonas sp. D01, capable of growing in tributyrin medium, was isolated from the gut microbiota of yellow mealworm. By using in silico analyses, we discovered a hypothesized esterase encoding gene in the D01 bacterium, and its encoded protein, EstD04, was classified as a bacterial hormone-sensitive lipase (bHSL) of the type IV lipase family. The study revealed that the recombinant EstD04-His(6x) protein exhibited esterase activity and broad substrate specificity, as it was capable of hydrolyzing p-nitrophenyl derivatives with different acyl chain lengths. By using the most favorable substrate p-nitrophenyl butyrate (C4), we defined the optimal temperature and pH value for EstD04 esterase activity as 40 °C and pH 8, respectively, with a catalytic efficiency (kcat/Km) of 6.17 × 103 mM-1 s-1 at 40 °C. EstD04 demonstrated high stability between pH 8 and 10, and thus, it might be capably used as an alkaline esterase in industrial applications. The addition of Mg2+ and NH4+, as well as DMSO, could stimulate EstD04 enzyme activity. Based on bioinformatic motif analyses and tertiary structural simulation, we determined EstD04 to be a typical bHSL protein with highly conserved motifs, including a triad catalytic center (Ser160, Glu253, and His283), two cap regions, hinge sites, and an oxyanion hole, which are important for the type IV enzyme activity. Moreover, the sequence analysis suggested that the two unique discrete cap regions of EstD04 may contribute to its alkali mesophilic nature, allowing EstD04 to exhibit extremely distinct physiological properties from its evolutionarily closest esterase.


Subject(s)
Gastrointestinal Microbiome , Tenebrio , Animals , Esterases/metabolism , Tenebrio/metabolism , Amino Acid Sequence , Pseudomonas/metabolism , Sterol Esterase/metabolism , Bacteria/metabolism , Substrate Specificity , Hydrogen-Ion Concentration , Cloning, Molecular , Enzyme Stability
4.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768700

ABSTRACT

Neuraminidase (NA)-based immunity to influenza can be useful for protecting against novel antigenic variants. To develop safe and effective tools to assess NA-based immunity, we generated a baculovirus-based pseudotyped virus, N1-Bac, that expresses the full-length NA of the influenza A/California/07/2009 (H1N1)pdm09 strain. We evaluated the level of NA-inhibiting (NI) antibodies in the paired blood sera of influenza patients by means of an enzyme-linked lectin assay (ELLA) using the influenza virus or N1-Bac. Additionally, we evaluated the level of NA antibodies by means of the enzyme-linked immunosorbent assay (ELISA) with an N1-expressing Sf21 culture. We detected a strong correlation between our results from using the influenza virus and NA-Bac pseudoviruses to detect NI antibodies and a medium-strong correlation between NI antibodies and NA antibodies determined by an N1-cell ELISA, indicating that baculovirus-based platforms can be successfully used to evaluate NI or NA antibodies. Furthermore, animal experiments showed that immunization with N1-Bac protected against infection with a drift variant of the A/H1N1pdm09 influenza virus. Our results demonstrate that recombinant baculovirus can be an effective influenza pseudotype to evaluate influenza serologic immunity and protect against influenza virus infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Humans , Neuraminidase/genetics , Antibodies, Viral , Antibodies, Blocking
5.
World J Microbiol Biotechnol ; 39(2): 44, 2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36526923

ABSTRACT

Burkholderia sp. SP4, isolated from agricultural soils, has a high capability of degrading di-2-ethylhexyl-phthalate (DEHP). It degrades up to 99% of DEHP (300 mg l-1) in minimal salt (MS) media within 48 h without adding additionally auxiliary carbon source. The optimal conditions for SP4 to degrade DEHP are determined to be at 35 °C and pH 6.0. Supplementation of glucose (3.0 g l-1), sodium dodecyl sulfate (SDS) (0.2%), peptone (0.5 g l-1), or non-ionic surfactant Brij 35 (0.2%, 0.5% or 1%) in MS-DEHP media increases the DEHP degradation activity. Furthermore, kinetic analyses for DEHP degradation by SP4 reveals that it is a first-order reaction, and the half-life analyses also demonstrates that SP4 has a better degradative activity compared to other previously identified microbes. By means of HPLC-ESI-QTOF-MS, the metabolic intermediates of DEHP are identified for SP4, which include mono-2-ethylhexylphthalate (MEHP), mono-butyl phthalate (MBP), phthalic acid (PA), salicylic acid (SA), and 4-oxo-hexanoic acid. The presence of SA indicates that SP4 can consume DEHP using a dual biodegradation pathway diverged from the isomeric products of benzoate. Taken together, our study identifies a resilient DEHP-degradable bacterium and characterizes a novel degradation pathway for DEHP biodegradation. We plan to build on this finding in the context of removing DEHP from various environments.


Subject(s)
Burkholderia , Diethylhexyl Phthalate , Phthalic Acids , Diethylhexyl Phthalate/metabolism , Burkholderia/metabolism , Phthalic Acids/metabolism , Biodegradation, Environmental , Sodium Chloride
6.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36145348

ABSTRACT

Influenza outbreaks caused by A/H7N9 viruses have occurred since 2013. After 2016, A/H7N9 influenza viruses underwent evolutionary changes. In this study, we examined the antigenic properties of influenza neuraminidase (NA) of A/H7N9 viruses as part of a live influenza vaccine (LAIV). It was shown that neuraminidase inhibiting (NI) antibodies obtained after A/Anhui/1/2013(H7N9)-based LAIV vaccination did not inhibit A/Hong Kong/125/2017(H7N9) NA and vice versa. The A/Hong Kong/125/2017(H7N9)-based LAIV elicited higher levels of NI antibodies compared to the A/Anhui/1/2013(H7N9)-based LAIV after two doses. Thelow degree of coincidence of the antibody response to hemagglutinin (HA) and NA after LAIV vaccination allows us to consider an enzyme-linked lectin assay (ELLA) as an additional measure for assessing the immunogenicity of influenza vaccines. In mice, N9-reactive monoclonal antibodies (mABs) for the A/environment/Shanghai/RL01/2013(H7N9) influenza virus partially protected against lung infection from the A/Guangdong/17SF003/2016 IDCDC-RG56N(H7N9) virus, thus showing the cross-protective properties of monoclonal antibodies against the drift variant.

7.
iScience ; 25(1): 103648, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35028533

ABSTRACT

Baculoviruses Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) and Bombyx mori nucleopolyhedrovirus (BmNPV) have highly similar genome sequences but exhibit no overlap in their host range. After baculovirus infects nonpermissive larvae (e.g., AcMNPV infecting B. mori or BmNPV infecting Spodoptera litura), we found that stored carbohydrates, including hemolymph trehalose and fat body glycogen, are rapidly transformed into glucose; enzymes involved in glycolysis and the TCA cycle are upregulated and produce more ATP; adenosine signaling that regulates glycolytic activity is also increased. Subsequently, phagocytosis in cellular immunity and the expression of genes involved in humoral immunity increase significantly. Moreover, inhibiting glycolysis and the expression of gloverins in nonpermissive hosts increased baculovirus infectivity, indicating that the stimulated energy production is designed to support the immune response against infection. Our study highlights that alteration of the host's carbohydrate metabolism is an important factor determining the host specificity of baculoviruses, in addition to viral factors.

8.
Front Immunol ; 12: 803807, 2021.
Article in English | MEDLINE | ID: mdl-34868089

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2021.761136.].

9.
iScience ; 24(10): 103056, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34755080

ABSTRACT

Impairment in the learning/memory behavior of bees is responsible for the massive disappearance of bee populations and its consequent agricultural economic losses. Such impairment might be because of o both pesticide exposure and pathogen infection, with a key contributor deformed wing virus (DWV). The present study found that sodium butyrate (NaB) significantly increased survival and reversed the learning/memory impairment of DWV-infected bees. A next-generation sequencing analysis showed that NaB affected the expression of genes involved in glycolytic processes and memory formation, which were suppressed by DWV infection. In addition, we performed a large-scale movement tracking experiment by using a wireless sensor network-based automatic real-time monitoring system and confirmed that NaB could improve the homing ability of DWV-infected bees. In short, we demonstrated the mechanism of how epigenetic regulation can resume the memory function of honeybees and suggest strategies for applying NaB to reduce the incidence of colony losses.

10.
Front Immunol ; 12: 761136, 2021.
Article in English | MEDLINE | ID: mdl-34707621

ABSTRACT

Scrub typhus (ST), also known as tsutsugamushi disease and caused by rickettsia Orientia tsutsugamushi, is an underestimated fatal epidemic in the Asia-Pacific region, resulting in a million human infections each year. ST is easily misdiagnosed as clinical diagnosis is based on non-specific skin eschar and flu-like symptoms. Thus, the lack of accurate, convenient, and low-cost detection methods for ST poses a global health threat. To address this problem, we adopted baculovirus surface-display technology to express three variants of TSA56, the major membrane antigen of O. tsutsugamushi, as well as the passenger domain of ScaC (ScaC-PD), on insect Sf21 cell surfaces rather than biosafety level 3 bacteria in an enzyme-linked immunosorbent assay (ELISA). Recombinant TSA56 and ScaC-PD were all properly expressed and displayed on Sf21 cells. Our cell-based ELISA comprising the four antigen-displaying cell types interacted with monoclonal antibodies as well as serum samples from ST-positive field-caught rats. This cell-based ELISA presented high accuracy (96.3%), sensitivity (98.6%), and specificity (84.6%) when tested against the ST-positive rat sera. Results of a pilot study using human sera were also highly consistent with the results of immunofluorescence analyses. By adopting this approach, we circumvented complex purification and refolding processes required to generate recombinant O. tsutsugamushi antigens and reduced the need for expensive equipment and extensively trained operators. Thus, our system has the potential to become a widely used serological platform for diagnosing ST.


Subject(s)
Antibodies, Bacterial/blood , Orientia tsutsugamushi/immunology , Scrub Typhus/diagnosis , Animals , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Baculoviridae/genetics , Cell Line , Cell Surface Display Techniques , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Rats , Recombinant Proteins/immunology , Scrub Typhus/blood , Scrub Typhus/immunology , Spodoptera
11.
Diagnostics (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072047

ABSTRACT

Gp.Mur is a clinically relevant antigen of the MNS blood group system that is highly prevalent in several Asian populations. Its corresponding antibody, anti-Gp.Mur, has been implicated in hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. Currently, identifying and confirming anti-Gp.Mur antibody presence in sera via agglutination of a panel of red blood cells (RBCs) is inefficient and difficult to quantify. Using a baculovirus expression system to express Gp.Mur antigen on insect cell surfaces, we have developed a quantitative cell-based system to confirm the presence of anti-Gp.Mur antibody in human serum. We obtained 10 serum samples preidentified as having anti-Gp.Mur antibody and another 4 samples containing noncorresponding antibodies from hospital patients. Insect cells displaying Gp.Mur antigen successfully adsorbed anti-Gp.Mur antibody in the sera and inhibited the RBC agglutination mediated by this antibody. By varying the concentration of Gp.Mur-displaying cells, we could grade levels of RBC agglutination by anti-Gp.Mur antibody. Densitometric analysis further enabled quantitative determinations of hemagglutination inhibition by Gp.Mur-displaying cells. We believe that this cell-based hemagglutination inhibition system greatly improves or supplements existing technology and is a convenient means for accurately identifying and quantifying anti-Gp.Mur antibody.

12.
Viruses ; 13(2)2021 02 15.
Article in English | MEDLINE | ID: mdl-33671997

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes serious and highly contagious enteric disease in swine worldwide. In this study, we constructed a recombinant baculovirus (S-Bac) expressing full-length spike protein of the virulent epidemic genotype 2b (G2b) PEDV strain for serological studies of infected pigs. We found that most spike-specific antibodies produced upon PEDV infection in pigs are conformation-specific and they could be detected on S-Bac-infected insect cells by immunofluorescent assay, but they were insensitive to Western blot analysis, the typical method for antiserum analysis. These results indicated that spike conformation is crucial for serum recognition. Since it is difficult to purify trimeric spike membrane protein for conventional enzyme-linked immunosorbent assay (ELISA), we used S-Bac to generate a novel cell-based ELISA for convenient PEDV detection. We analyzed 100 pig serum samples, and our cell-based ELISA exhibited a sensitivity of 100%, a specificity of 97%, and almost perfect agreement [Cohen's kappa coefficient value (κ) = 0.98] with immunocytochemical staining results. Our cell-based ELISA rapidly presented antigen for proper detection of conformation-specific antibodies, making PEDV detection more convenient, and it will be useful for detecting many viral diseases in the future.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Coronavirus Infections/veterinary , Enzyme-Linked Immunosorbent Assay , Porcine epidemic diarrhea virus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Baculoviridae/immunology , Chlorocebus aethiops , Coronavirus Infections/immunology , Recombinant Proteins/immunology , Spodoptera , Swine , Swine Diseases/immunology , Swine Diseases/virology , Vero Cells
13.
Commun Biol ; 4(1): 52, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420334

ABSTRACT

To avoid inducing immune and physiological responses in insect hosts, parasitoid wasps have developed several mechanisms to inhibit them during parasitism, including the production of venom, specialized wasp cells, and symbioses with polydnaviruses (PDVs). These mechanisms alter the host physiology to give the wasp offspring a greater chance of survival. However, the molecular mechanisms for most of these alterations remain unclear. In the present study, we applied next-generation sequencing analysis and identified several miRNAs that were encoded in the genome of Snellenius manilae bracovirus (SmBV), and expressed in the host larvae, Spodoptera litura, during parasitism. Among these miRNAs, SmBV-miR-199b-5p and SmBV-miR-2989 were found to target domeless and toll-7 in the host, which are involved in the host innate immune responses. Microinjecting the inhibitors of these two miRNAs into parasitized S. litura larvae not only severely decreased the pupation rate of Snellenius manilae, but also restored the phagocytosis and encapsulation activity of the hemocytes. The results demonstrate that these two SmBV-encoded miRNAs play an important role in suppressing the immune responses of parasitized hosts. Overall, our study uncovers the functions of two SmBV-encoded miRNAs in regulating the host innate immune responses upon wasp parasitism.


Subject(s)
Host-Parasite Interactions/immunology , MicroRNAs/metabolism , Polydnaviridae/metabolism , Spodoptera/immunology , Wasps/virology , Animals , Female , Genome, Viral , Immunity, Cellular , Immunity, Innate , MicroRNAs/antagonists & inhibitors , Phagocytosis , Spodoptera/parasitology
14.
Front Immunol ; 12: 771011, 2021.
Article in English | MEDLINE | ID: mdl-35003088

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is an ongoing pandemic. Detection and vaccination are essential for disease control, but they are distinct and complex operations that require significant improvements. Here, we developed an integrated detection and vaccination system to greatly simplify these efforts. We constructed recombinant baculoviruses to separately display the nucleocapsid (N) and spike (S) proteins of SARS-CoV-2. Insect cells infected by the recombinant baculoviruses were used to generate a cell-based system to accurately detect patient serum. Notably, although well-recognized by our newly developed detection system in which S-displaying insect cells acted as antigen, anti-S antibodies from many patients were barely detectable by Western blot, evidencing that COVID-19 patients primarily produce conformation-dependent anti-S antibodies. Furthermore, the same baculovirus constructs can display N (N-Bac) or S (S-Bac) on the baculovirus envelope and serve as vector vaccines. Animal experiments show that S-Bac or N-Bac immunization in mice elicited a strong and specific antibody response, and S-Bac in particular stimulated effective neutralizing antibodies without the need for adjuvant. Our integrated system maintains antigen conformation and membrane structure to facilitate serum detection and antibody stimulation. Thus, compared with currently available technologies, our system represents a simplified and efficient platform for better SARS-CoV-2 detection and vaccination.


Subject(s)
Baculoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Baculoviridae/genetics , COVID-19/immunology , COVID-19/prevention & control , Cell Line , Cell Surface Display Techniques , Coronavirus Nucleocapsid Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Phosphoproteins/genetics , Phosphoproteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Vaccination , Young Adult
15.
J Gen Appl Microbiol ; 66(6): 297-306, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-32435002

ABSTRACT

An Escherichia coli ATP-dependent two-component protease, ClpYQ(HslUV), targets the SulA molecule, an SOS induced protein. ClpY recognizes, unfolds and translocates the substrates into the proteolytic site of ClpQ for degradation. ClpY is divided into three domains N, I and C. The N domain is an ATPase; the C domain allows for oligomerization, while the I domain coordinates substrate binding. In the ClpYQ complex, two layer pore sites, pore I and II, are in the center of its hexameric rings. However, the actual roles of two outer-loop (130~159 aa, L1 and 175~209 aa, L2) of the ClpY-I domain for the degradation of SulA are unclear. In this study, with ATP, the MBP-SulA molecule was bound to ClpY oligomer(s). ClpYΔL1 (ClpY deleted of loop 1) oligomers revealed an excessive SulA-binding activity. With ClpQ, it showed increased proteolytic activity for SulA degradation. Yet, ClpYΔL2 formed fewer oligomers that retained less proteolytic activity, but still had increased SulA-binding activity. In contrast, ClpYΔpore I had a lower SulA-binding activity. ClpYΔ pore I ΔL2 showed the lowest SulA-binding activity. In addition, ClpY (Q198L, Q200L), with a double point mutation in loop 2, formed stable oligomers. It also had a subtle increase in SulA-binding activity, but displayed less proteolytic activity. As a result, loop 2 has an effect on ClpY oligomerization, substrate binding and delivery. Loop 1 has a role as a gate, to prevent excessive substrate binding. Thus, accordingly, ClpY permits the formation of SulA-ClpY(6x), with ATP(s), and this complex then docks through ClpQ(6x) for ultimate proteolytic degradation.


Subject(s)
Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Proteolysis , Amino Acid Sequence/genetics , Binding Sites , Escherichia coli/enzymology , Escherichia coli/genetics , Mutagenesis, Site-Directed , Protein Binding , Protein Domains/genetics , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
16.
Sci Rep ; 10(1): 2096, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034183

ABSTRACT

Sufficient energy supply to the host immune system is important for resisting pathogens. Therefore, during pathogen infection, the host metabolism is reassigned from storage, growth, and development to the immune system. Previous studies in Drosophila melanogaster have demonstrated that systemic metabolic switching upon an immune challenge is activated by extracellular adenosine signaling, modulating carbohydrate mobilization and redistributing energy to the hemocytes. In the present study, we discovered that symbiotic virus (SmBV) of the parasitoid wasp Snellenius manilae is able to down-regulate the extracellular adenosine of its host, Spodoptera litura, to inhibit metabolism switching. The decreased carbohydrate mobilization, glycogenolysis, and ATP synthesis upon infection results in the host being unable to supply energy to its immune system, thus benefitting the development of wasp larvae. When we added adenosine to the infected S. litura larvae, we observed enhanced host immune responses that decreased the pupation rate of S. manilae. Previous studies showed that after pathogen infection, the host activates its adenosine pathway to trigger immune responses. However, our results suggest a different model: we found that in S. manilae, SmBV modulates the host adenosine pathway such that wasp eggs and larvae can evade the host immune response.


Subject(s)
Adenosine/metabolism , Polydnaviridae/metabolism , Spodoptera/virology , Wasps/virology , Animals , Carbohydrate Metabolism , Down-Regulation , Extracellular Space/metabolism , Immune System/metabolism , Immune Tolerance , Larva , Metabolic Networks and Pathways , Spodoptera/immunology , Spodoptera/metabolism , Spodoptera/parasitology
17.
Curr Issues Mol Biol ; 34: 231-256, 2020.
Article in English | MEDLINE | ID: mdl-31167963

ABSTRACT

The baculovirus-insect cell system has long been deployed for a variety of applications including for use as biopesticides, for recombinant protein production, transient transgene expression, tissue therapy, and for vaccine production. Apart from the advantage of large-scale heterologous protein production with appropriate eukaryotic post-translational modification, foreign proteins can also be displayed on the viral envelope. This surface-display technology preserves the native multimeric structure of the protein, thereby expanding the clinical and pharmaceutical utility of the baculovirus system. Recombinant baculoviruses displaying major antigens for human or animal viruses can serve as appropriate vaccines. They can also serve as effective diagnostic platforms and various cell-based assay systems. In this review, we discuss progress in applying baculovirus surface-display, including protein display on the envelope, capsid, and occlusion bodies of baculoviruses, as well as on cells. We will also describe strategies for improvement of this biotechnological approach.


Subject(s)
Baculoviridae/genetics , Biotechnology , Cell Surface Display Techniques , Genetic Vectors/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Animals , Biotechnology/methods , Cell Line , Humans , Insecta
18.
ACS Synth Biol ; 8(11): 2472-2482, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31565926

ABSTRACT

Hemagglutinin (HA) is the major surface antigen of influenza virus and the most promising influenza vaccine immunogen. In 2013, the devastating H7N9 influenza virus was identified in China, which induced high mortality. The HA of this virus (H7) is relatively unstable, making it challenging to produce an effective vaccine. To improve the stability of HA protein from H7N9 influenza virus for better vaccine antigens without impairing immunogenicity, we recombined the HA from H7N9 (H7) with a more stable HA from H3N2 (H3) by structure-guided recombination, resulting in six chimeric HAs, FrA-FrF. Two of these chimeric HAs, FrB and FrC, exhibited proper hemagglutination activity and presented improved thermal stability compared to the original H7. Mice immunized with FrB and FrC elicited H7-specific antibodies comparable to those induced by parental H7, and the antisera collected from these immunized mice successfully inhibited H7N9 infection in a microneutralization assay. These results suggest that our structural-recombination approach can create stabilizing chimeric antigens while maintaining proper immunogenicity, which may not only benefit the construction of more stable HA vaccines to fight against H7N9 infection, but also facilitate effective vaccine improvements for other influenza viruses or infectious pathogens. In addition, this study also demonstrates the potential for better engineering of multimeric protein complexes like HA to achieve improved function, which are often immunologically or pharmaceutically important but difficult to modify.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Hemagglutinins/immunology , Influenza A Virus, H7N9 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/therapy , Recombinant Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Immunization/methods , Immunogenicity, Vaccine , Immunoglobulin G/blood , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H7N9 Subtype/chemistry , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/virology , Protein Stability , Recombination, Genetic , Treatment Outcome
19.
J Virol ; 93(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30728268

ABSTRACT

Upon virus infection of a cell, the uncoated DNA is usually blocked by the host intrinsic immune system inside the nucleus. Although it is crucial for the virus to counteract the host intrinsic immune system and access its genome, little is known about how viruses can knock down host restriction and identify their blocked genomes for later viral gene activation and replication. We found that upon baculovirus transduction into Vero E6 cells, the invading viral DNA is trapped by the cellular death domain-associated protein (Daxx) and histone H3.3 in the nucleus, resulting in gene inactivation. IE2, a baculovirus transactivator, targets host Daxx through IE2 SUMO-interacting motifs (SIMs) to indirectly access viral DNA and forms unique nuclear body structures, which we term clathrate cage-like apparatus (CCLAs), at the early transduction stage. At the later transduction stage, CCLAs gradually enlarge, and IE2 continues to closely interact with viral DNA but no longer associates with Daxx. The association with Daxx is essential for IE2 CCLA formation, and the enlarged CCLAs are capable of transactivating viral but not chromosomal DNA of Vero E6 cells. Our study reveals that baculovirus IE2 counteracts the cellular intrinsic immune system by specifically targeting Daxx and H3.3 to associate with viral DNA indirectly and efficiently. IE2 then utilizes this association with viral DNA to establish a unique CCLA cellular nanomachinery, which is visible under light microscopy as an enclosed environment for proper viral gene expression.IMPORTANCE The major breakthrough of this work is that viral protein IE2 localizes and transactivates its own viral DNA through a most unlikely route, i.e., host proteins Daxx and H3.3, which are designed to efficiently restrict viral DNA from expression. By interacting with these host intrinsic immune factors, IE2 can thus target the viral DNA and then form a unique spherical nuclear body, which we name the CCLA, to enclose the viral DNA and necessary factors to assist in high-level transactivation. Our study represents one of the most complete investigations of nuclear body formation. In addition, so far only RNA or protein molecules have been reported as potential nucleators for initiating nuclear body formation; our study may represent the first example showing that DNA can be a nucleator for a new class of nuclear body formation.


Subject(s)
DNA, Viral/metabolism , Gene Expression Regulation, Viral/physiology , Molecular Chaperones/metabolism , Nucleopolyhedroviruses/metabolism , Viral Proteins/metabolism , Amino Acid Motifs , Animals , Chlorocebus aethiops , DNA, Viral/genetics , Histones/genetics , Histones/metabolism , Molecular Chaperones/genetics , Nucleopolyhedroviruses/genetics , Sf9 Cells , Spodoptera , Vero Cells , Viral Proteins/genetics
20.
Mol Cell Proteomics ; 16(1): 113-120, 2017 01.
Article in English | MEDLINE | ID: mdl-27864322

ABSTRACT

Proteolysis is a vital mechanism to regulate the cellular proteome in all kingdoms of life, and ATP-dependent proteases play a crucial role within this process. In Escherichia coli, ClpYQ is one of the primary ATP-dependent proteases. In addition to function with removals of abnormal peptides in the cells, ClpYQ degrades regulatory proteins if necessary and thus let cells adjust to various environmental conditions. In E. coli, SulA, RcsA, RpoH and TraJ as well as RNase R, have been identified as natural protein substrates of ClpYQ. ClpYQ contains ClpY and ClpQ. The ATPase ClpY is responsible for protein recognition, unfolding, and translocation into the catalytic core of ClpQ. In this study, we use an indirect identification strategy to screen possible ClpY targets with E. coli K12 proteome chips. The chip assay results showed that YbaB strongly bound to ClpY. We used yeast two-hybrid assay to confirm the interactions between ClpY and YbaB protein and determined the Kd between ClpY and YbaB by quartz crystal microbalance. Furthermore, we validated that YbaB was successfully degraded by ClpYQ protease activity using ClpYQ in vitro and in vivo degradation assay. These findings demonstrated the YbaB is a novel substrate of ClpYQ protease. This work also successfully demonstrated that with the use of recognition element of a protease can successfully screen its substrates by indirect proteome chip screening assay.


Subject(s)
DNA-Binding Proteins/metabolism , Endopeptidase Clp/metabolism , Escherichia coli Proteins/metabolism , Protein Array Analysis/methods , Escherichia coli/metabolism , Kinetics , Protein Binding , Protein Interaction Maps , Proteome/analysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL