Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 38444, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27917938

ABSTRACT

A novel high-quality, large-size, reflection-type topological insulator Bi2Te3-Gold (BG) film-based nonlinear optical modulator has been successfully fabricated as a two-dimensional saturable absorber mirror (SAM) by pulsed laser deposition (PLD). This BG-SAM possesses saturation fluence of 108.3 µJ/cm2, modulation depth (ΔR) of 6.5%, non-saturable loss of 38.4%, high damage threshold above 1.354 mJ/cm2 and excellent uniformity providing for the generation of passive mode-locked (ML) pulses for erbium-doped fiber lasers (EDFLs) on a large sample area. Under 124 mW 976 nm pumping, We obtained 452-fs continuous-wave ML pulses with pulse energy of 91 pJ and full width at half-maximum (FWHM) of 6.72-nm from this EDFL. The results clearly evidence that the PLD is an efficient method for fabricating BG-SAM that is suitable for a compact ultrafast ML fiber laser system.

2.
Opt Lett ; 41(7): 1616-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192301

ABSTRACT

Phase recovery by solving the transport-of-intensity equation (TIE) is a non-iterative and non-interferometric phase retrieval technique. From solving the TIE with conventional, one partial derivative and Hilbert transform methods for both the periodic and aperiodic samples, we demonstrate that the Hilbert transform method can provide the smoother phase images with edge enhancement and fine structures. Furthermore, compared with the images measured by optical and atomic force microscopy, the Hilbert transform method has the ability to quantitatively map out the phase images for both the periodic and aperiodic structures.

3.
Nanoscale ; 8(16): 8847-54, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27072287

ABSTRACT

Magnetic and multiferroic nanocomposites with two distinct phases have been a topic of intense research for their profound potential applications in the field of spintronics. In addition to growing high-quality phase separated heteroepitaxial nanocomposites, the strain engineering that is conducive to enhance the tunability of material properties, in general, and the magnetic properties, in particular, is of utmost importance in exploring new possibilities. Here, we investigated the magneto-structural coupling between antiferromagnetic BiFeO3 (BFO) and ferrimagnetic CoFe2O4 (CFO) in self-assembled vertically aligned nanocomposites grown on LaAlO3 (LAO) and SrTiO3 (STO) substrates. We found that BFO exhibits tetragonal (T) and rhombohedral (R) structures as the stable phases and CFO has high magnetocrystalline anisotropy even in the form of nanocomposites. The temperature and magnetic field dependent magnetizations of T_BFO-CFO/LAO and R_BFO-CFO/STO nanocomposites primarily demonstrate the magnetoelastic coupling between these variants.

4.
Sci Rep ; 5: 12073, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26170119

ABSTRACT

In the past decades, mesocrystal, a kind of nanocrystals with specific crystallographic orientation, has drawn a lot of attention due to its intriguing functionalities. While the research community keeps searching for new mesocrystal systems, it is equally crucial to develop new approaches to tune the properties of mesocrystals. In this work, a self-organized two-dimensional mesocrystal composed of highly oriented CoFe2O4 (CFO) nano-crystals with assistance of different perovskite matrices is studied as a model system. We have demonstrated that the strain state and corresponding magnetic properties of the CFO mesocrystal can be modulated by changing the surrounding perovskite matrix through their intimate structural coupling. Interestingly, this controllability is more strongly correlated to the competition of bonding strength between the matrices and the CFO mesocrystals rather than the lattice mismatch. When embedded in a matrix with a higher melting point or stiffness, the CFO mesocrystal experiences higher out-of-plane compressive strain and shows a stronger magnetic anisotropy as well as cation site-exchange. Our study suggests a new pathway to tailor the functionalities of mesocrystals.

5.
Opt Express ; 22(11): 12880-9, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24921485

ABSTRACT

Broadband graphene oxide/PVA films were used as saturable absorbers (SAs) for mode locking erbium-doped fiber laser (EDFL) and ytterbium-doped fiber laser (YDFL) at 1.06 µm and 1.55 µm. They provide modulation depths of 3.15% and 6.2% for EDFL and YDFL, respectively. Stable self-starting mode-locked pulses are obtained for both lasers, confirming that the graphene oxide is cost-effective. We have generated mode-locked pulses with spectral width, repetition rate, and pulse duration of 0.75 nm, 9.5 MHz, and 2.7 ps. This is the shortest pulse duration directly obtained from an all-normal-dispersion YDFL with graphene-oxide saturable absorber.

6.
Opt Lett ; 38(6): 845-7, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23503235

ABSTRACT

We report the generation of passively harmonic mode-locked pulses using a 1.06 µm semiconductor optical amplifier (SOA) in a figure-eight laser configuration operated in the all-normal-dispersion regime. Different orders of harmonic mode-locking can be obtained from 30 MHz to 12.02 GHz by changing the injection current of the SOA from 80 to 660 mA together with the adjustment of polarization controllers. The highest pulse repetition rate increases almost linearly with the SOA current. As SOA current is set to 660 mA, we obtain the intracavity power of 46 mW at the highest repetition rate of 12.02 GHz, corresponding to the 1202th harmonic of the fundamental mode-locking frequency. To our best knowledge, this is the lowest intracavity power to generate the highest repetition rate with a passively mode-locked laser in the all-normal-dispersion regime.

7.
Adv Mater ; 25(14): 2040-4, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23427105

ABSTRACT

Hybrid nanoparticles (NPs) composed of multiple components offer new opportunities for next-generation materials. In this study, a paradigm for the noble metal/ternary complex oxide hybrid NPs is reported by adopting pulsed laser ablation in liquids. As model hybrids, gold-spinel heterodimer (Au-CoFe2O4) and gold-pervoskite heterodimer (Au-SrTiO3) NPs are investigated. This work has demonstrated the diverse playgroup of NP conjugation enlarged by complex oxides.

8.
Opt Lett ; 36(7): 1284-6, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21479059

ABSTRACT

We use a new (to our knowledge) fabrication method of a single-walled carbon nanotube (SWCNT) absorber without polymer to sustain high-power illumination. Using a series of saturable absorbers (SAs) incorporating different amounts of SWCNTs, we demonstrate mode-locking for a Nd:GdVO4 laser in the 1 µm spectral range. Continuous-wave mode-locking (CWML) pulses with a maximum output power of 3.6 W at 1063 nm and high noise extinction of 61 dB has been achieved to give the highest pulse peak power of 3.6 kW and pulse energy of 30 nJ under 15 W pumping. To our knowledge, this is the highest CWML output power with SWCNT-SAs reported. The measured nonlinear absorption of the SWCNT-SAs shows a modulation depth of ~3% with subpicosecond recovery time.

SELECTION OF CITATIONS
SEARCH DETAIL
...