Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 932: 172950, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38703842

ABSTRACT

Increasing demands from agriculture and urbanization have decreased groundwater level and increased salinity worldwide. Better aquifer characterization and soil salinity mapping are important for proactive groundwater management. Airborne electromagnetic (AEM) is a powerful tool for aquifer characterization and salinity delineation. However, AEM needs to be interpreted with caution before being used for groundwater quality analysis. This study introduces a framework that utilizes the AEM data for both lithologic modeling and salinity delineation. A resistivity-to-lithology (R2L) model is developed to interpret AEM resistivity to lithology based a depth-dependent multi-resistivity thresholds. Then, a cokriging method is used to integrate AEM data from two different EM systems to predict resistivity at the aquifer. Finally, a resistivity-to-chloride concentration (R2C) model utilizes the resistivity model to estimate chloride concentrations at sand facies. A deep learning artificial neural network (DL-ANN) model is introduced with a successive bootstrapping approach to estimate total dissolved solids first and then use it together with resistivity data to estimate chloride concentration. The methodology was applied to delineating salinity plumes in the Mississippi River Valley alluvial aquifer (MRVA). This study found that the salinity distribution in MRVA is highly correlated with the Jurassic salt basin, salt domes, faulting, seismicity, and river water quality. The result indicates salinity upconing due to excessive pumping.

2.
Sci Total Environ ; 642: 1032-1049, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30045486

ABSTRACT

Groundwater vulnerability assessment is a measure of potential groundwater contamination for areas of interest. The main objective of this study is to modify original DRASTIC model using four objective methods, Weights-of-Evidence (WOE), Shannon Entropy (SE), Logistic Model Tree (LMT), and Bootstrap Aggregating (BA) to create a map of groundwater vulnerability for the Sari-Behshahr plain, Iran. The study also investigated impact of addition of eight additional factors (distance to fault, fault density, distance to river, river density, land-use, soil order, geological time scale, and altitude) to improve groundwater vulnerability assessment. A total of 109 nitrate concentration data points were used for modeling and validation purposes. The efficacy of the four methods was evaluated quantitatively using the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). AUC value for original DRASTIC model without any modification of weights and rates was 0.50. Modification of weights and rates resulted in better performance with AUC values of 0.64, 0.65, 0.75, and 0.81 for BA, SE, LMT, and WOE methods, respectively. This indicates that performance of WOE is the best in assessing groundwater vulnerability for DRASTIC model with 7 factors. The results also show more improvement in predictability of the WOE model by introducing 8 additional factors to the DRASTIC as AUC value increased to 0.91. The most effective contributing factor for ground water vulnerability in the study area is the net recharge. The least effective factors are the impact of vadose zone and hydraulic conductivity.

3.
Ground Water ; 53(2): 305-16, 2015.
Article in English | MEDLINE | ID: mdl-24890644

ABSTRACT

Groundwater prediction models are subjected to various sources of uncertainty. This study introduces a hierarchical Bayesian model averaging (HBMA) method to segregate and prioritize sources of uncertainty in a hierarchical structure and conduct BMA for concentration prediction. A BMA tree of models is developed to understand the impact of individual sources of uncertainty and uncertainty propagation to model predictions. HBMA evaluates the relative importance of different modeling propositions at each level in the BMA tree of model weights. The HBMA method is applied to chloride concentration prediction for the "1,500-foot" sand of the Baton Rouge area, Louisiana from 2005 to 2029. The groundwater head data from 1990 to 2004 is used for model calibration. Four sources of uncertainty are considered and resulted in 180 flow and transport models for concentration prediction. The results show that prediction variances of concentration from uncertain model elements are much higher than the prediction variance from uncertain model parameters. The HBMA method is able to quantify the contributions of individual sources of uncertainty to the total uncertainty.


Subject(s)
Groundwater/chemistry , Models, Theoretical , Bayes Theorem , Chlorides/analysis , Geologic Sediments , Louisiana , Seawater/chemistry , Uncertainty , Water Movements
4.
Ground Water ; 53(6): 908-19, 2015.
Article in English | MEDLINE | ID: mdl-25510348

ABSTRACT

The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive.


Subject(s)
Groundwater , Models, Theoretical , Uncertainty , Bayes Theorem , Geologic Sediments , Louisiana , Seawater , Water Movements , Water Supply , Water Wells
5.
Ground Water ; 48(1): 42-52, 2010.
Article in English | MEDLINE | ID: mdl-19878328

ABSTRACT

The objective of this research was to study the sorption and transport of bacteriophage MS-2 (a bacterial virus) in saturated sediments under the effect of salinity and soluble organic matter (SOM). One-dimensional column experiments were conducted on washed high-purity silica sand and sandy soil. In sand column tests, increasing salinity showed distinct effect on enhancing MS-2 sorption. However, SOM decreased MS-2 sorption. Using a two-site reversible-irreversible sorption model and the double layer theory, we explained that pore-water salinity potentially compressed the theoretical thickness of double layers of MS-2 and sand, and thus increased sorption on reversible sorption sites. On irreversible sorption sites, increasing salinity reversed charges of some sand particles from negative to positive, and thus converted reversible sorption sites into irreversible sites and enhanced sorption of MS-2. SOM was able to expand the double layer thickness on reversible sites and competed with MS-2 for the same binding place on irreversible sites. In sandy soil column tests, the bonded and dissolved (natural) soil organic matters suppressed the effects of pore-water salinity and added SOM and significantly reduced MS-2 adsorption. This was explained that the bonded soil organic matter occupied a great portion of sorption sites and significantly reduced sorption sites for MS-2. In addition, the dissolved soil organic matter potentially expanded the double layer thickness of MS-2 and sandy soil on reversible sorption sites and competed with MS-2 for the same binding place.


Subject(s)
Organic Chemicals/toxicity , Salinity , Silicon Dioxide , Viruses/drug effects , Adsorption , Soil Microbiology , Solubility
6.
Ground Water ; 46(6): 851-64, 2008.
Article in English | MEDLINE | ID: mdl-18671749

ABSTRACT

Hydraulic conductivity identification remains a challenging inverse problem in ground water modeling because of the inherent nonuniqueness and lack of flexibility in parameterization methods. This study introduces maximum weighted log-likelihood estimation (MWLLE) along with multiple generalized parameterization (GP) methods to identify hydraulic conductivity and to address nonuniqueness and inflexibility problems in parameterization. A scaling factor for information criteria is suggested to obtain reasonable weights of parameterization methods for the MWLLE and model averaging method. The scaling factor is a statistical parameter relating to a desired significance level in Occam's window and the variance of the chi-squares distribution of the fitting error. Through model averaging with multiple GP methods, the conditional estimate of hydraulic conductivity and its total conditional covariances are calculated. A numerical example illustrates the issue arising from Occam's window in estimating model weights and shows the usefulness of the scaling factor to obtain reasonable model weights. Moreover, the numerical example demonstrates the advantage of using multiple GP methods over the zonation and interpolation methods because GP provides better models in the model averaging method. The methodology is applied to the Alamitos Gap area, California, to identify the hydraulic conductivity field. The results show that the use of the scaling factor is necessary in order to incorporate good parameterization methods and to avoid a dominant parameterization method.


Subject(s)
Environmental Monitoring , Water Movements , Water Supply/analysis , Water/chemistry , Algorithms , California , Microfluidic Analytical Techniques , Models, Theoretical
7.
Ground Water ; 41(2): 156-69, 2003.
Article in English | MEDLINE | ID: mdl-12656282

ABSTRACT

This research develops a methodology for parameter structure identification in ground water modeling. For a given set of observations, parameter structure identification seeks to identify the parameter dimension, its corresponding parameter pattern and values. Voronoi tessellation is used to parameterize the unknown distributed parameter into a number of zones. Accordingly, the parameter structure identification problem is equivalent to finding the number and locations as well as the values of the basis points associated with the Voronoi tessellation. A genetic algorithm (GA) is allied with a grid search method and a quasi-Newton algorithm to solve the inverse problem. GA is first used to search for the near-optimal parameter pattern and values. Next, a grid search method and a quasi-Newton algorithm iteratively improve the GA's estimates. Sensitivities of state variables to parameters are calculated by the sensitivity-equation method. MODFLOW and MT3DMS are employed to solve the coupled flow and transport model as well as the derived sensitivity equations. The optimal parameter dimension is determined using criteria based on parameter uncertainty and parameter structure discrimination. Numerical experiments are conducted to demonstrate the proposed methodology, in which the true transmissivity field is characterized by either a continuous distribution or a distribution that can be characterized by zones. We conclude that the optimized transmissivity zones capture the trend and distribution of the true transmissivity field.


Subject(s)
Models, Theoretical , Water Movements , Water Supply , Algorithms , Reproducibility of Results , Sensitivity and Specificity , Soil
SELECTION OF CITATIONS
SEARCH DETAIL