Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 6(7): 2173-9, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27194803

ABSTRACT

High density linkage maps are useful tools for fine-scale mapping of quantitative trait loci, and characterization of the recombination landscape of a species' genome. Genomic resources for Atlantic salmon (Salmo salar) include a well-assembled reference genome, and high density single nucleotide polymorphism (SNP) arrays. Our aim was to create a high density linkage map, and to align it with the reference genome assembly. Over 96,000 SNPs were mapped and ordered on the 29 salmon linkage groups using a pedigreed population comprising 622 fish from 60 nuclear families, all genotyped with the 'ssalar01' high density SNP array. The number of SNPs per group showed a high positive correlation with physical chromosome length (r = 0.95). While the order of markers on the genetic and physical maps was generally consistent, areas of discrepancy were identified. Approximately 6.5% of the previously unmapped reference genome sequence was assigned to chromosomes using the linkage map. Male recombination rate was lower than females across the vast majority of the genome, but with a notable peak in subtelomeric regions. Finally, using RNA-Seq data to annotate the reference genome, the mapped SNPs were categorized according to their predicted function, including annotation of ∼2500 putative nonsynonymous variants. The highest density SNP linkage map for any salmonid species has been created, annotated, and integrated with the Atlantic salmon reference genome assembly. This map highlights the marked heterochiasmy of salmon, and provides a useful resource for salmonid genetics and genomics research.


Subject(s)
Chromosome Mapping/methods , Genetic Linkage , Genome , Polymorphism, Single Nucleotide , Salmo salar/genetics , Animals , Female , Genetic Loci , Genetic Markers , Genotype , Male , Microsatellite Repeats , Molecular Sequence Annotation , Recombination, Genetic
2.
Int J Mol Sci ; 17(1)2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26703584

ABSTRACT

Understanding the relationship between genetic variants and traits of economic importance in aquaculture species is pertinent to selective breeding programmes. High-throughput sequencing technologies have enabled the discovery of large numbers of SNPs in Atlantic salmon, and high density SNP arrays now exist. A previous genome-wide association study (GWAS) using a high density SNP array (132K SNPs) has revealed the polygenic nature of early growth traits in salmon, but has also identified candidate SNPs showing suggestive associations with these traits. The aim of this study was to test the association of the candidate growth-associated SNPs in a separate population of farmed Atlantic salmon to verify their effects. Identifying SNP-trait associations in two populations provides evidence that the associations are true and robust. Using a large cohort (N = 1152), we successfully genotyped eight candidate SNPs from the previous GWAS, two of which were significantly associated with several growth and fillet traits measured at harvest. The genes proximal to these SNPs were identified by alignment to the salmon reference genome and are discussed in the context of their potential role in underpinning genetic variation in salmon growth.


Subject(s)
Body Weight/genetics , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Salmon/genetics , Animals , Genome , Quantitative Trait Loci , Salmon/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...