Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362072

ABSTRACT

A kind of hydroxylated polymethoxyflavone (PMFs) existing in the citrus genus, 5-Demethyltangeretin (5-DTAN), has been reported to possess several bioactivities in vitro and in vivo. The aim of this study was to investigate whether acetylation could enhance the anticancer activity and oral bioavailability of 5-DTAN. PC-3 human prostate cancer cells were treated with tangeretin (TAN), 5-DTAN, and 5-acetylated TAN (5-ATAN), and the results showed that the cytotoxic effect 5-ATAN (IC50 value of 5.1 µM) on the cell viability of PC-3 cells was stronger than that of TAN (IC50 value of 17.2 µM) and 5-DTAN (IC50 value of 11.8 µM). Compared to 5-DTAN, 5-ATAN treatment caused a more pronounced DNA ladder, increased the sub-G1 phase population, and induced G2/M phase arrest in the cell cycle of PC-3 cells. We also found that 5-ATAN triggered the activation of caspase-3 and the progression of the intrinsic mitochondrial pathway in PC-3 cells, suggesting the induction of apoptosis. In a cell wound healing test, 5-ATAN dose-dependently reduced the cell migration, and the expression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) was decreased after 48 h of 5-ATAN treatment. Moreover, oral administration of 5-ATAN showed a significantly stronger inhibitory effect on tumor size and tumor weight in tumor-bearing nude mice than those of vehicle or the 5-DTAN group (p < 0.05). Furthermore, pharmacokinetic results showed that single-dose oral administration of 5-ATAN exhibited a higher maximum concentration (Cmax) and area under the curve (AUC) of 5-DTAN in plasma than that of 5-DTAN. More extensive distribution of 5-DTAN to most tissues of mice was also observed in mice treated with 5-ATAN for 7 days. In conclusion, acetylation strongly enhances the anticancer activity and oral bioavailability of 5-DTAN and could be a promising strategy to promote the potential bioactivities of natural products.


Subject(s)
Antineoplastic Agents , Flavones , Animals , Humans , Male , Mice , Acetylation , Apoptosis , Biological Availability , Cell Line, Tumor , Matrix Metalloproteinase 2 , Mice, Nude , Flavones/chemistry , Flavones/pharmacokinetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics
2.
J Agric Food Chem ; 70(16): 4966-4980, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35416649

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a recent chronic liver disease common in many developed countries and is closely associated with metabolic syndrome, such as obesity and insulin resistance. The present study was performed to investigate the effects of pterostilbene (Pt) and its derivative 3'-hydroxypterostilbene (OHPt) on free fatty acids (FFA)-induced lipid accumulation in HepG2 cells and high-fat diet (HFD)-induced NAFLD in C57BL/6J mice. The results showed that Pt and OHPt significantly ameliorated FFA-induced steatosis in HepG2 cells and enhanced lipolysis through the upregulation of SIRT1/AMPK and insulin signaling pathways. In the in vivo study, Pt and OHPt treatment resulted in reduced hepatic lipid droplets accumulation. The data showed that Pt and OHPt upregulated the SIRT1/AMPK pathway and subsequently downregulated the protein expression of SREBP-1 to activate fatty acid (FA) ß-oxidation to inhibit FA synthesis. Pt and OHPt administration activated the insulin signaling pathway and further ameliorated the insulin resistance and liver function in the HFD-fed mice. Furthermore, Pt and OHPt markedly increased the numbers of Oscillospira and decreased the numbers of Allobaculum, Phascolarctobacterium, and Staphylococcus compared with those in the HFD group. These robust results indicate that Pt and OHPt are able to possess potential health benefits in improving insulin resistance and hepatic steatosis by promoting healthy populations or abundances of considered vital microbiota. Besides, OHPt is more effective than Pt, which might have promising chemotherapeutic effects for future clinical application.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Non-alcoholic Fatty Liver Disease , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/metabolism , Insulin/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Signal Transduction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Stilbenes
3.
Nutrients ; 14(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35276886

ABSTRACT

Obesity is referred to as a condition in which excess body fat has accumulated to an extent that it causes negative impacts on health. The formation of body fat is regulated by complicated networks in relation to energy metabolism, and gut microbiota have been regarded as a key player. Studies have shown that supplements of probiotics provide benefits to health, including an improvement in metabolic syndrome and the control of body weight. In the present study, three probiotic strains, AP-32, bv-77, and CP-9, stood out from nine candidates using a lipid consumption assay, and were subsequently introduced to further animal tests. A rodent model of obesity was induced by a high-fat diet (HFD) in Sprague-Dawley (SD) rats, and three probiotic strains were administered either separately or in a mixture. A low dose (5 × 109 CFU/kg/day) and a high dose (2.5 × 1010 CFU/kg/day) of probiotics were orally provided to obese rats. The bioeffects of the probiotic supplements were evaluated based on five aspects: (1) the body weight and growth rate; (2) ketone bodies, non-esterified fatty acids (NEFAs), and feed efficiency; (3) blood biochemistry; (4) fat content; and (5) gut microbiota composition. Our results demonstrated that the supplement of AP-32, CP-9, and bv-77 alleviated the increasing rate of body weight and prevented the elevation of NEFAs and ketone bodies in obese rats. Although the effect on fat content showed a minor improvement, the supplement of probiotics displayed significant improvements in HFD-induced poor blood biochemical characteristics, such as alanine aminotransferase (ALT), aspartate Transaminase (AST), and uric acid, within 4 weeks. Furthermore, the combined supplement of three strains significantly increased Akkermansia mucinphila as compared with three individual strains, while its enrichment was negatively correlated with NEFAs and energy metabolism. In general, a mixture of three probiotic strains delivered a better outcome than a single strain, and the high dose of supplements provided a more profound benefit than the low dose. In conclusion, three probiotic strains, AP-32, bv-77, and CP-9, can alleviate body fat formation in obese rats. Furthermore, a combined supplement of these three probiotic strains may have potential in treating or controlling metabolic disorders.


Subject(s)
Diet, High-Fat , Probiotics , Akkermansia , Animals , Diet, High-Fat/adverse effects , Energy Metabolism , Obesity/metabolism , Rats , Rats, Sprague-Dawley
4.
J Food Sci ; 87(5): 2211-2228, 2022 May.
Article in English | MEDLINE | ID: mdl-35347713

ABSTRACT

Bifidobacterium animalis CP-9 was a commensal strain isolated from human breast milk. In this study, genetic and 90-day oral toxicity were assessed in rodents for its safety. Ames test as well as in vivo bone marrow micronucleus and spermatocyte chromosomal aberration were surveyed in mice. B. animalis CP-9 exhibited no mutagenic activity in the Ames test at the highest tested dosage (5000 µg/plate) with or without metabolic activation. No evidence of in vivo genetic toxicity was observed at the maximum tested dosage of 10 g/kg body weight (BW). Furthermore, there was no statistically significant difference of the biochemical and histological parameters in the rats administrated with B. animalis CP-9 at dosages of 0, 0.25, 0.5, or 1.5 g/kg BW/day. No indication of concern for pathogenicity was exhibited during evaluation of Bifidobacterium ssp. generally, or B. animalis specifically. It was noted that B. animalis CP-9 was able to survive in gastric acid-like and high bile salt environment, and showed strong adhesion to the intestinal epithelial cells, Caco-2. Intriguingly, B. animalis CP-9 decreased olic acid-induced triglyceral (TG) accumulation in the Caco-2 cells, and viable B. animalis CP-9 had a better bacteriostatic activity compared to another well-documented B. animalis ssp. lactis, BB-12. Based on the present study, B. animalis CP-9 can be a safe probiotic supplement and may improve the health of host. PRACTICAL APPLICATION: Although the health benefits of probiotics are well known, the safety of a probiotic product is acquired particularly for a long-term consumption. We conduct the safety of B. animalis CP-9 isolated from human breast milk, and demonstrate no toxicity concern in vitro and in vivo. Hence, B. animalis CP-9 powder can be used as a commercial and safe probiotic supplement with some health benefits.


Subject(s)
Bifidobacterium animalis , Probiotics , Animals , Bifidobacterium/genetics , Bifidobacterium animalis/genetics , Caco-2 Cells , Humans , Intestines/microbiology , Mice , Rats
5.
Foods ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613372

ABSTRACT

Contemporary pharmacological studies have reported that freshwater clam (Corbicula fluminea) can provide a broad spectrum of bioactivities, including antioxidant, anticancer, antihypertensive, hepatoprotective, and hypocholesterolemic effects. The aim of this study was to evaluate the gastroprotective effects of water extract of freshwater clam (WEC) on indomethacin (IND)-induced gastric mucosal cell damage in vitro and gastric ulcer in vivo. The cell viability of rat gastric mucosa RGM-1 cells was markedly decreased by 0.8 mM of IND treatment, and pre-treated with various concentration of WEC significantly restored IND-induced cell damage in a dose-dependent manner. WEC also significantly attenuated the elevated reactive oxygen species (ROS) levels, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, and nuclear factor-κB (NF-κB) p65 nuclear translocation induced by IND. In the in vivo study, IND caused severe gastric ulcer in Wistar rats, while WEC pretreatment effectively reduced the ulcer area and edema in the submucosa. We found that WEC significantly restored glutathione (GSH) content in gastric mucosa in a dose-dependent manner (p < 0.05). The reduction of prostaglandin E2 (PGE2) caused by IND was also improved with higher doses of WEC administration. Moreover, the overexpression of COX-2, iNOS, and tumor necrosis factor-α (TNF-α) proteins in gastric mucosa was downregulated by administration of WEC. Consequently, WEC can be used as a potential nutritional supplement to improve NSAIDs-caused gastric mucosal lesions.

6.
Int J Mol Sci ; 22(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34884465

ABSTRACT

Rhizopus oryzae is a fungus used to ferment tempeh in Indonesia and is generally recognized as safe (GRAS) for human consumption by the USA FDA. We previously assessed the effect of a tempeh extract on cortisol levels in zebrafish but did not include behavioral studies. Here, we measured the GABA content in three strains of Rhizopus oryzae, two isolated by us (MHU 001 and MHU 002) and one purchased. We then investigated the effect of tempeh on cortisol and the gut microbiota in a zebrafish experimental model. GABA concentration was the highest in MHU 002 (9.712 ± 0.404 g kg-1) followed by our MHU 001 strain and the purchased one. The fish were divided into one control group fed a normal diet and three experimental groups fed soybean tempeh fermented with one of the three strains of Rhizopus oryzae. After two weeks, individual fish were subjected to unpredicted chronic stress using the novel tank diving test and the tank light-dark test. Next-generation sequencing was used to analyze gut microbial communities and RT-PCR to analyze the expression of BDNF (brain-derived neurotrophic factor) gene and of other genes involved in serotonin signaling/metabolism in gut and brain. Tempeh-fed zebrafish exhibited increased exploratory behavior (less stress) in both tank tests. They also had significantly reduced gut Proteobacteria (include E. coli) (51.90% vs. 84.97%) and significantly increased gut Actinobacteria (include Bifidobacterium spp.) (1.80% vs. 0.79%). The content of Bifidobacteriumadolescentis, a "psychobiotic", increased ten-fold from 0.04% to 0.45%. Tempeh also increases BDNF levels in zebrafish brain. Rhizopus oryzae MHU 001 greatly improved the anti-stress effect of tempeh and microbiota composition in zebrafish gut.


Subject(s)
Bacteria/classification , DNA, Bacterial/genetics , Rhizopus oryzae/physiology , Soy Foods/microbiology , Zebrafish/physiology , Animal Feed/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Brain-Derived Neurotrophic Factor/genetics , Fermentation , Gastrointestinal Microbiome , High-Throughput Nucleotide Sequencing , Hydrocortisone/analysis , Rhizopus oryzae/chemistry , Rhizopus oryzae/classification , Sequence Analysis, DNA , Stress, Physiological , Zebrafish Proteins/genetics , gamma-Aminobutyric Acid/analysis
7.
J Food Drug Anal ; 25(1): 134-147, 2017 01.
Article in English | MEDLINE | ID: mdl-28911531

ABSTRACT

Stilbenes are a class of polyphenolic compounds, naturally found in a wide variety of dietary sources such as grapes, berries, peanuts, red wine, and some medicinal plants. There are several well-known stilbenes including trans-resveratrol, pterostilbene, and 3'-hydroxypterostilbene. The core chemical structure of stilbene compounds is 1,2-diphenylethylene. Recently, stilbenes have attracted extensive attention and interest due to their wide range of health-beneficial effects such as anti-inflammation, -carcinogenic, -diabetes, and -dyslipidemia activities. Moreover, accumulating in vitro and in vivo studies have reported that stilbene compounds act as inducers of multiple cell-death pathways such as apoptosis, cell cycle arrest, and autophagy for chemopreventive and chemotherapeutic agents in several types of cancer cells. The aim of this review is to highlight recent molecular findings and biological actions of trans-resveratrol, pterostilbene, and 3'-hydroxypterostilbene.


Subject(s)
Stilbenes/pharmacology , Apoptosis , Humans , Resveratrol
8.
J Food Drug Anal ; 25(3): 559-566, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28911642

ABSTRACT

Psoriasis, which is regarded as a T-cell-mediated chronic inflammatory skin disease, is characterized by hyperproliferation and poor differentiation of epidermal keratinocytes. In this study, we aimed to determine the in vivo effect of a potentially probiotic strain, Lactobacillus pentosus GMNL-77, in imiquimod-induced epidermal hyperplasia and psoriasis-like skin inflammation in BALB/c mice. Oral administration of L. pentosus GMNL-77 significantly decreased erythematous scaling lesions. Real-time polymerase chain reaction showed that treatment with L. pentosus GMNL-77 significantly decreased the mRNA levels of proinflammatory cytokines, including tumor necrosis factor-alpha, interleukin (IL)-6, and the IL-23/IL-17A axis-associated cytokines (IL-23, IL-17A/F, and IL-22) in the skin of imiquimod-treated mice. In addition, we found that L. pentosus GMNL-77 decreased the spleen weights of the imiquimod-treated group and reduced the numbers of IL-17- and IL-22-producing CD4+ T cells in the spleen. In conclusion, the present study provides insight into the potential use of L. pentosus GMNL-77 in the future treatment of psoriasis.


Subject(s)
Lactobacillus pentosus , Aminoquinolines , Animals , Imiquimod , Interleukin-17 , Mice , Psoriasis
9.
J Agric Food Chem ; 56(22): 11018-24, 2008 Nov 26.
Article in English | MEDLINE | ID: mdl-18973337

ABSTRACT

Recent evidence strongly suggests that oxidative stress due to redox imbalance is highly associated with metabolic syndrome. The objective of this study was to evaluate the effect of the supplementation of longan flower water extract (LFWE), which showed powerful antioxidative activity in vitro, on markers of metabolic syndrome in a fructose-fed rat model. Male Sprague-Dawley rats were randomly divided into four groups: group C, fed with standard Purina chow; group F, fed with high-fructose diet (HF) alone; group L, fed with HF plus LFWE 125 mg/kg bw per day by gavage; and group H, fed HF plus LFWE 250 mg/kg bw per day by gavage. The dietary manipulation lasted for 14 weeks. Results of our study showed that rats fed with HF resulted in oxidative stress and affected the antioxidant status including plasma thiobarbituric acid and liver antioxidant enzyme activity. Treatment with LFWE significantly augmented the antioxidant system. HF was able to cause insulin resistance and elevation of the blood pressure. The supplementation of LFWE ameliorated insulin resistance by enhancing the expression of insulin signaling pathway related proteins, including insulin receptor substrate-1 and glucose transporter 4. LFWE supplementation was also found to decrease systolic blood pressure. These findings indicate that longan flower water extract may improve the symptoms of metabolic syndrome in fructose-fed rats.


Subject(s)
Flowers/chemistry , Fructose/administration & dosage , Metabolic Syndrome/drug therapy , Plant Extracts/administration & dosage , Proanthocyanidins/administration & dosage , Sapindaceae/chemistry , Animals , Diet , Male , Phytotherapy , Plant Extracts/chemistry , Proanthocyanidins/analysis , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...