Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Metab ; 74: 101756, 2023 08.
Article in English | MEDLINE | ID: mdl-37348737

ABSTRACT

BACKGROUND: As the pandemic evolves, post-acute sequelae of CoV-2 (PASC) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PASC-related cardiomyopathy. METHODS: A Spike protein-pseudotyped (Spp) virus with the proper surface tropism of SARS-CoV-2 was developed for viral entry assay in vitro and administration into high fat diet (HFD)-fed mice. The systemic viral loads and cardiac transcriptomes were analyzed at 2 and 24 h, 3, 6, and 24 weeks post introducing (wpi) Spp using RNA-seq or real time RT-PCR. Echocardiography was used to monitor cardiac functions. RESULTS: Low-density lipoprotein cholesterol enhanced viral uptake in endothelial cells, macrophages, and cardiomyocyte-like H9C2 cells. Selective cardiac and adipose viral depositions were observed in HFD mice but not in normal-chow-fed mice. The cardiac transcriptional signatures in HFD mice at 3, 6, and 24 wpi showed systemic suppression of mitochondria respiratory chain genes including ATP synthases and nicotinamide adenine dinucleotide:ubiquinone oxidoreductase gene members, upregulation of stress pathway-related crucial factors such as nuclear factor-erythroid 2-related factor 1 and signal transducer and activator of transcription 5A, and increases in expression of glucose metabolism-associated genes. As compared with the age-matched HFD control mice, cardiac ejection fraction and fractional shortening were significantly decreased, while left ventricular end-systolic diameter and volume were significantly elevated, and cardiac fibrosis was increased in HFD mice at 24 wpi. CONCLUSION: Our data demonstrated that the Spike protein could induce long-term transcriptional suppression of mitochondria metabolic genes and cause cardiac fibrosis and myocardial contractile impairment in obese mice, providing mechanistic insights to PASC-related cardiomyopathy.


Subject(s)
COVID-19 , Cardiomyopathies , Mice , Humans , Animals , Spike Glycoprotein, Coronavirus , Mice, Obese , Endothelial Cells/metabolism , COVID-19/complications , SARS-CoV-2 , Cardiomyopathies/etiology , Myocytes, Cardiac/metabolism , Obesity/metabolism , Fibrosis
2.
bioRxiv ; 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36656778

ABSTRACT

Background: As the pandemic evolves, post-acute sequelae of CoV-2 (PACS) including cardiovascular manifestations have emerged as a new health threat. This study aims to study whether the Spike protein plus obesity can exacerbate PACS-related cardiomyopathy. Methods: A Spike protein-pseudotyped (Spp) virus with the proper surface tropism of SARS-CoV-2 was developed for viral entry assay in vitro and administration into high fat diet (HFD)-fed mice. The systemic viral loads and cardiac transcriptomes were analyzed at 2 and 24 hrs, 3, 6, and 24 weeks post introducing (wpi) Spp using RNA-seq or real time RT-PCR. Echocardiography was used to monitor cardiac functions. Results: Low-density lipoprotein cholesterol enhanced viral uptake in endothelial cells, macrophages, and cardiomyocyte-like H9C2 cells. Selective cardiac and adipose viral depositions were observed in HFD mice but not in normal-chow-fed mice. The cardiac transcriptional signatures in HFD mice at 3, 6, and 24 wpi showed systemic suppression of mitochondria respiratory chain genes including ATP synthases and nicotinamide adenine dinucleotide:ubiquinone oxidoreductase gene members, upregulation of stress pathway-related crucial factors such as nuclear factor-erythroid 2-related factor 1 and signal transducer and activator of transcription 5A, and increases in expression of glucose metabolism-associated genes. As compared with the age-matched HFD control mice, cardiac ejection fraction and fractional shortening were significantly decreased, while left ventricular end-systolic diameter and volume were significantly elevated, and cardiac fibrosis was increased in HFD mice at 24 wpi. Conclusion: Our data demonstrated that the Spike protein could induce long-term transcriptional suppression of mitochondria metabolic genes and cause cardiac fibrosis and myocardial contractile impairment, providing mechanistic insights to PACS-related cardiomyopathy.

3.
BMC Med Educ ; 22(1): 149, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248030

ABSTRACT

BACKGROUND: The effects of drastic curricular changes necessitated by the COVID-19 pandemic on medical students' education and wellbeing have remained largely unstudied. Out study aimed to characterize how medical students were affected by the pandemic, specifically how limitations introduced by the pandemic may have affected the quality, delivery, and experience of medical education. METHODS: Three hundred students from 5 U.S. allopathic medical schools were surveyed to determine students' perceptions about their quality of medical education, professional development, and mental health during the COVID-19 pandemic (October 2020-December 2020). RESULTS: A large majority of students report that while lecture-based learning has not been significantly affected by the pandemic, small-group and clinical learning have greatly declined in quality. Students also reported higher levels of depression, anxiety, and uncertainty with regards to their futures as physicians. CONCLUSIONS: The COVID-19 pandemic has greatly affected the medical student education and wellbeing. Although medical schools have implemented measures to continue to train medical students as effectively as they can, further strategies must be devised to ensure the well-being of students in the present and for future national emergencies.


Subject(s)
COVID-19 , Students, Medical , COVID-19/epidemiology , Cross-Sectional Studies , Humans , Pandemics , Perception , SARS-CoV-2 , Students, Medical/psychology , United States/epidemiology
4.
Expert Rev Anticancer Ther ; 22(3): 307-315, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35114862

ABSTRACT

INTRODUCTION: Gestational trophoblastic diseases and neoplasias (GTDs and GTNs) comprise a spectrum of diseases arising from abnormally proliferating placental/trophoblastic tissue following an antecedent molar or non-molar pregnancy. These can spread to the brain hematogenously in about 10% of patients, mostly in high-risk disease. The optimal management of patients with brain metastases from GTN is unclear, with multiple systemic regimens under use and an uncertain role for radiotherapy. AREAS COVERED: Here, we review the epidemiology, workup, and treatment of GTN with central nervous system (CNS) involvement. Literature searches in PubMed and Google Scholar were conducted using combinations of keywords such as 'gestational trophoblastic disease,' 'gestational trophoblastic neoplasia,' 'choriocarcinoma,' and 'brain metastases.' EXPERT OPINION: Systemic therapy is the frontline treatment for GTN with brain metastases, and radiotherapy should only be considered in the context of a clinical trial or for resistant/recurrent disease. Surgery has a limited role in palliating symptoms or relieving intracranial pressure/bleeding. Given the highly specialized care these patients require, treatment at a high-volume referral center with multidisciplinary collaboration likely leads to better outcomes. Randomized trials should be conducted to determine the best systemic therapy option for GTN.


Subject(s)
Brain Neoplasms , Gestational Trophoblastic Disease , Brain Neoplasms/secondary , Brain Neoplasms/therapy , Female , Gestational Trophoblastic Disease/diagnosis , Gestational Trophoblastic Disease/drug therapy , Humans , Placenta/pathology , Pregnancy
5.
Comput Struct Biotechnol J ; 19: 6240-6254, 2021.
Article in English | MEDLINE | ID: mdl-34900135

ABSTRACT

BACKGROUND: The mechanisms of carcinogenesis from viral infections are extraordinarily complex and not well understood. Traditional methods of analyzing RNA-sequencing data may not be sufficient for unraveling complicated interactions between viruses and host cells. Using RNA and DNA-sequencing data from The Cancer Genome Atlas (TCGA), we aim to explore whether virus-induced tumors exhibit similar immune-associated (IA) dysregulations using a new algorithm we developed that focuses on the most important biological mechanisms involved in virus-induced cancers. Differential expression, survival correlation, and clinical variable correlations were used to identify the most clinically relevant IA genes dysregulated in 5 virus-induced cancers (HPV-induced head and neck squamous cell carcinoma, HPV-induced cervical cancer, EBV-induced stomach cancer, HBV-induced liver cancer, and HCV-induced liver cancer) after which a mechanistic approach was adopted to identify pathways implicated in IA gene dysregulation. RESULTS: Our results revealed that IA dysregulations vary with the cancer type and the virus type, but cytokine signaling pathways are dysregulated in all virus-induced cancers. Furthermore, we also found that important similarities exist between all 5 virus-induced cancers in dysregulated clinically relevant oncogenic signatures and IA pathways. Finally, we also discovered potential mechanisms for genomic alterations to induce IA gene dysregulations using our algorithm. CONCLUSIONS: Our study offers a new approach to mechanism identification through integrating functional annotations and large-scale sequencing data, which may be invaluable to the discovery of new immunotherapy targets for virus-induced cancers.

6.
Cancers (Basel) ; 13(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34439379

ABSTRACT

Tobacco is the primary etiologic agent in worsened lung squamous cell carcinoma (LUSC) outcomes. Meanwhile, it has been shown that etiologic agents alter enhancer RNAs (eRNAs) expression. Therefore, we aimed to identify the effects of tobacco and electronic cigarette (e-cigarette) use on eRNA expression in relation to LUSC outcomes. We extracted eRNA counts from RNA-sequencing data of tumor/adjacent normal tissue and before/after e-cigarette tissue from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), respectively. Tobacco-mediated LUSC eRNAs were correlated to patient survival, clinical variables, and immune-associated elements. eRNA expression was also correlated to mutation rates through the Repeated Evaluation of Variables Conditional Entropy and Redundance (REVEALER) algorithm and methylated sites through methylationArrayAnalysis. Differential expression analysis was then completed for the e-cigarette data to compare with key tobacco-mediated eRNAs. We identified 684 downregulated eRNAs and 819 upregulated eRNAs associated with tobacco-mediated LUSC, specifically, with the cancer pathological stage. We also observed a decrease in immune cell abundance in tobacco-mediated LUSC. Yet, we found an increased association of eRNA expression with immune cell abundance in tobacco-mediated LUSC. We identified 16 key eRNAs with significant correlations to 8 clinical variables, implicating these eRNAs in LUSC malignancy. Furthermore, we observed that these 16 eRNAs were highly associated with chromosomal alterations and reduced CpG site methylation. Finally, we observed large eRNA expression upregulation with e-cigarette use, which corresponded to the upregulation of the 16 key eRNAs. Our findings provide a novel mechanism by which tobacco and e-cigarette smoke influences eRNA interactions to promote LUSC pathogenesis and provide insight regarding disease progression at a molecular level.

7.
Cancer ; 127(18): 3466-3475, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34096048

ABSTRACT

BACKGROUND: The authors sought to study the risk factors associated with severe outcomes in hospitalized coronavirus disease 2019 (COVID-19) patients with cancer. METHODS: The authors queried the New York University Langone Medical Center's records for hospitalized patients who were polymerase chain reaction-positive for severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) and performed chart reviews on patients with cancer diagnoses to identify patients with active cancer and patients with a history of cancer. Descriptive statistics were calculated and multivariable logistic regression was used to determine associations between clinical, demographic, and laboratory characteristics with outcomes, including death and admission to the intensive care unit. RESULTS: A total of 4184 hospitalized SARS CoV-2+ patients, including 233 with active cancer, were identified. Patients with active cancer were more likely to die than those with a history of cancer and those without any cancer history (34.3% vs 27.6% vs 20%, respectively; P < .01). In multivariable regression among all patients, active cancer (odds ratio [OR], 1.89; CI, 1.34-2.67; P < .01), older age (OR, 1.06; CI, 1.05-1.06; P < .01), male sex (OR for female vs male, 0.70; CI, 0.58-0.84; P < .01), diabetes (OR, 1.26; CI, 1.04-1.53; P = .02), morbidly obese body mass index (OR, 1.87; CI, 1.24-2.81; P < .01), and elevated D-dimer (OR, 6.41 for value >2300; CI, 4.75-8.66; P < .01) were associated with increased mortality. Recent cancer-directed medical therapy was not associated with death in multivariable analysis. Among patients with active cancer, those with a hematologic malignancy had the highest mortality rate in comparison with other cancer types (47.83% vs 28.66%; P < .01). CONCLUSIONS: The authors found that patients with an active cancer diagnosis were more likely to die from COVID-19. Those with hematologic malignancies were at the highest risk of death. Patients receiving cancer-directed therapy within 3 months before hospitalization had no overall increased risk of death. LAY SUMMARY: Our investigators found that hospitalized patients with active cancer were more likely to die from coronavirus disease 2019 (COVID-19) than those with a history of cancer and those without any cancer history. Patients with hematologic cancers were the most likely among patients with cancer to die from COVID-19. Patients who received cancer therapy within 3 months before hospitalization did not have an increased risk of death.


Subject(s)
COVID-19/therapy , Neoplasms/complications , Adult , Aged , COVID-19/complications , COVID-19/virology , Case-Control Studies , Female , Humans , Male , Middle Aged , New York City , SARS-CoV-2/isolation & purification , Young Adult
8.
Int J Mol Sci ; 21(22)2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33207573

ABSTRACT

Osteoarthritis (OA) is the most common joint disorder in the United States, and the gut microbiome has recently emerged as a potential etiologic factor in OA development. Recent studies have shown that a microbiome is present at joint synovia. Therefore, we aimed to characterize the intra-articular microbiome within osteoarthritic synovia and to illustrate its role in OA disease progression. RNA-sequencing data from OA patient synovial tissue was aligned to a library of microbial reference genomes to identify microbial reads indicative of microbial abundance. Microbial abundance data of OA and normal samples was compared to identify differentially abundant microbes. We computationally explored the correlation of differentially abundant microbes to immunological gene signatures, immune signaling pathways, and immune cell infiltration. We found that microbes correlated to OA are related to dysregulation of two main functional pathways: increased inflammation-induced extracellular matrix remodeling and decreased cell signaling pathways crucial for joint and immune function. We also confirmed that the differentially abundant and biologically relevant microbes we had identified were not contaminants. Collectively, our findings contribute to the understanding of the human microbiome, well-known OA risk factors, and the role microbes play in OA pathogenesis. In conclusion, we present previously undiscovered microbes implicated in the OA disease progression that may be useful for future treatment purposes.


Subject(s)
Bacteria , Knee Joint/microbiology , Microbiota , Osteoarthritis, Knee/microbiology , Synovial Membrane/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Humans , RNA-Seq
9.
BMC Med Inform Decis Mak ; 20(1): 247, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32993652

ABSTRACT

BACKGROUND: The recent Coronavirus Disease 2019 (COVID-19) pandemic has placed severe stress on healthcare systems worldwide, which is amplified by the critical shortage of COVID-19 tests. METHODS: In this study, we propose to generate a more accurate diagnosis model of COVID-19 based on patient symptoms and routine test results by applying machine learning to reanalyzing COVID-19 data from 151 published studies. We aim to investigate correlations between clinical variables, cluster COVID-19 patients into subtypes, and generate a computational classification model for discriminating between COVID-19 patients and influenza patients based on clinical variables alone. RESULTS: We discovered several novel associations between clinical variables, including correlations between being male and having higher levels of serum lymphocytes and neutrophils. We found that COVID-19 patients could be clustered into subtypes based on serum levels of immune cells, gender, and reported symptoms. Finally, we trained an XGBoost model to achieve a sensitivity of 92.5% and a specificity of 97.9% in discriminating COVID-19 patients from influenza patients. CONCLUSIONS: We demonstrated that computational methods trained on large clinical datasets could yield ever more accurate COVID-19 diagnostic models to mitigate the impact of lack of testing. We also presented previously unknown COVID-19 clinical variable correlations and clinical subgroups.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Influenza, Human/diagnosis , Machine Learning , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , Computer Simulation , Coronavirus Infections/classification , Datasets as Topic , Diagnosis, Differential , Female , Humans , Influenza A virus , Male , Pandemics/classification , Pneumonia, Viral/classification , SARS-CoV-2 , Sensitivity and Specificity
10.
Histol Histopathol ; 34(5): 479-490, 2019 May.
Article in English | MEDLINE | ID: mdl-30302745

ABSTRACT

INTRODUCTION: Port wine stain (PWS) is characterized as a progressive dilatation of immature venule-like vasculatures which result from differentiation-impaired endothelial cells. In this study, we aimed to identify the major biological pathways accounting for the pathogenesis of PWS. METHODS: Sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) was used to identify differentially expressed proteins in PWS lesions, followed by confirmative studies with immunohistochemistry, immunoblot and transmission electron microscopy (TEM). RESULTS: 107 out of 299 identified proteins showed differential expressions in PWS lesions as compared to normal skin, mainly involving the functions of biosynthesis, membrane trafficking, cytoskeleton and cell adhesion/migration. The confirmative studies showed that expressions of membrane trafficking/exocytosis related proteins such as VAT1, IQGAP1, HSC70, clathrin, perlecan, spectrin α1 and GDIR1 were significantly increased in PWS blood vessels as compared to normal ones; while collagen subtypes 6A1 and 6A3 were decreased in PWS skin. Furthermore, TEM studies showed there is a significant upregulation of extracellular vesicle exocytosis from PWS blood vessels as compared to control. CONCLUSIONS: The biological process of membrane trafficking and exocytosis is enhanced in PWS blood vessels. Our results imply that the extracellular vesicles released by lesional endothelial cells may act as potential intercellular signaling mediators to contribute to the pathogenesis of PWS.


Subject(s)
Exocytosis/physiology , Port-Wine Stain/metabolism , Protein Transport/physiology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Port-Wine Stain/pathology , Up-Regulation
11.
Neuron ; 90(1): 101-12, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26971949

ABSTRACT

Adult-born granule cells (abGCs) have been implicated in cognition and mood; however, it remains unknown how these cells behave in vivo. Here, we have used two-photon calcium imaging to monitor the activity of young abGCs in awake behaving mice. We find that young adult-born neurons fire at a higher rate in vivo but paradoxically exhibit less spatial tuning than their mature counterparts. When presented with different contexts, mature granule cells underwent robust remapping of their spatial representations, and the few spatially tuned adult-born cells remapped to a similar degree. We next used optogenetic silencing to confirm the direct involvement of abGCs in context encoding and discrimination, consistent with their proposed role in pattern separation. These results provide the first in vivo characterization of abGCs and reveal their participation in the encoding of novel information.


Subject(s)
Calcium/metabolism , Dentate Gyrus/metabolism , Neurogenesis , Neurons/metabolism , Animals , Cell Differentiation , Dentate Gyrus/cytology , Hippocampus/cytology , Hippocampus/metabolism , Mice , Microscopy, Fluorescence, Multiphoton , Optogenetics
12.
J Clin Lab Anal ; 30(1): 58-64, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25385317

ABSTRACT

BACKGROUND: In most research, there were positive associations between the insulin-like growth factor I (IGF-I) status, including IGF-I, insulin-like growth factor binding protein-3 (IGFBP-3), and ratio of IGF-I/IGFBP-3, and risks of breast cancer (BC), which was influenced by many factors, including hormone statuses and ethnicity. Therefore, the alterations of the IGF-I status in Taiwanese women with BC by menopausal statuses and hormone receptors were investigated. METHODS: The levels of IGF-I and IGFBP-3 were determined by the enzyme-labeled chemiluminescent immunometric assay, and the protein expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) on paraffin-embedded sections of tissues with BC were analyzed by the immunohistochemical method. RESULTS: The ratios of IGF-I/IGFBP-3 were significantly higher in the women with BC than those in the controls, but not of the levels of IGF-I and IGFBP-3; furthermore, the significantly higher ratios were found only in the postmenopausal status. In addition, there was no significant difference between the IGF-I status and ER and PR statuses, and HER2 expression, respectively, in the women with BC. CONCLUSIONS: The ratios of IGF-I/IGFBP-3 were increased in postmenopausal Taiwanese women with BC, irrespective of their ages, ER and PR statuses, and HER2 expression.


Subject(s)
Breast Neoplasms/metabolism , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor I/metabolism , Postmenopause/metabolism , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Adult , Age Factors , Aged , Case-Control Studies , Female , Humans , Middle Aged , Paraffin Embedding , Taiwan
13.
J Biol Chem ; 279(20): 21233-8, 2004 May 14.
Article in English | MEDLINE | ID: mdl-15004034

ABSTRACT

Myocardial ischemia/reperfusion (I/R) is associated with an extensive loss of myocardial cells. The apoptosis repressor with caspase recruitment domain (ARC) is a protein that is highly expressed in heart and skeletal muscle and has been demonstrated to protect the heart against I/R injury (Gustafsson, A. B., Sayen, M. R., Williams, S. D., Crow, M. T., and Gottlieb, R. A. (2002) Circulation 106, 735-739). In this study, we have shown that transduction of TAT-ARCL31F, a mutant of ARC in the caspase recruitment domain, did not reduce creatine kinase release and infarct size after I/R. TAT-ARCL31F also failed to protect against hydrogen peroxide-mediated cell death in H9c2 cells, suggesting that the caspase recruitment domain is important in mediating ARC's protective effects. In addition, we report that ARC co-immunoprecipitated with the pro-apoptotic protein Bax, which causes cytochrome c release when activated. TAT-ARC, but not TAT-ARCL31F, prevented Bax activation and cytochrome c release in hydrogen peroxide-treated H9c2 cells. TAT-ARC was also effective in blocking cytochrome c release after ischemia and reperfusion, whereas TAT-ARCL31F had no effect on cytochrome c release. In addition, recombinant ARC protein abrogated Bax-induced cytochrome c release from isolated mitochondria. This suggests that ARC can protect against cell death by interfering with activation of the mitochondrial death pathway through the interaction with Bax, preventing mitochondrial dysfunction and release of pro-apoptotic factors.


Subject(s)
Apoptosis/physiology , Caspase Inhibitors , Cell Death/physiology , Muscle Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins/metabolism , Animals , Apoptosis Regulatory Proteins , Cell Line , Creatine Kinase/metabolism , Cytochromes c/metabolism , Myocardial Infarction/enzymology , Myocardial Infarction/prevention & control , Myocardium/metabolism , Rats , Recombinant Fusion Proteins/metabolism , bcl-2-Associated X Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...