Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 92(12): 8536-8545, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32406234

ABSTRACT

Neurotransmitters are important chemicals in human physiological systems for initiating neuronal signaling pathways and in various critical health illnesses. However, concentration of neurotransmitters in the human body is very low (nM or pM level) and it is extremely difficult to detect the fluctuation of their concentrations in patients using existing electrochemical biosensors. In this work, we report the performance of highly densified carbon nanotubes fiber (HD-CNTf) cross-sections called rods (diameter ∼ 69 µm, and length ∼ 40 µm) as an ultrasensitive platform for detection of common neurotransmitters. HD-CNTf rods microelectrodes have open-ended CNTs exposed at the interface with electrolytes and cells and display a low impedance value, i.e., 1050 Ω. Their fabrication starts with dry spun CNT fibers that are encapsulated in an insulating polymer to preserve their structure and alignment. Arrays of HD-CNTf rods microelectrodes were applied to detect neurotransmitters, i.e., dopamine (DA), serotonin (5-HT), epinephrine (Epn), and norepinephrine (Norepn), using square wave voltammetry (SWV) and cyclic voltammetry (CV). They demonstrate good linearity in a broad linear range (1 nM to 100 µM) with an excellent limit of detection, i.e., 32 pM, 31 pM, 64 pM, and 9 pM for DA, 5-HT, Epn, and Norepn, respectively. To demonstrate practical application of HD-CNTf rod arrays, detection of DA in human biological fluids and real time monitoring of DA release from living pheochromocytoma (PC12) cells were performed.


Subject(s)
Nanotubes, Carbon/chemistry , Neurotransmitter Agents/analysis , Dielectric Spectroscopy , Dopamine/analysis , Epinephrine/analysis , Norepinephrine/analysis , Particle Size , Serotonin/analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...