Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37448031

ABSTRACT

In this study, a low-cost, software-defined Global Positioning System (GPS) and Satellite-Based Augmentation System (SBAS) Reflectometry (GPS&SBAS-R) system has been built and proposed to measure ocean-surface wave parameters on board the research vessel New Ocean Researcher 1 (R/V NOR-1) of Taiwan. A power-law, ocean-wave spectrum model has been used and applied with the Small Perturbation Method approach to solve the electromagnetic wave scattering problem from rough ocean surface, and compared with experimental seaborne GPS&SBAS-R observations. Meanwhile, the intensity scintillations of high-sampling GPS&SBAS-R signal acquisition data are thought to be caused by the moving of rough surfaces of the targeted ocean. We found that each derived scintillation power spectrum is a Fresnel-filtering result on ocean-surface elevation fluctuations and depends on the First Fresnel Zone (FFZ) distance and the ocean-surface wave velocity. The determined ocean-surface wave speeds have been compared and validated against nearby buoy measurements.


Subject(s)
Geographic Information Systems , Software , Physical Phenomena , Scattering, Radiation , Oceans and Seas
2.
Sensors (Basel) ; 22(7)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35408372

ABSTRACT

Recovering and distinguishing different ionospheric layers and signals usually requires slow and complicated procedures. In this work, we construct and train five convolutional neural network (CNN) models: DeepLab, fully convolutional DenseNet24 (FC-DenseNet24), deep watershed transform (DWT), Mask R-CNN, and spatial attention-UNet (SA-UNet) for the recovery of ionograms. The performance of the models is evaluated by intersection over union (IoU). We collect and manually label 6131 ionograms, which are acquired from a low-latitude ionosonde in Taiwan. These ionograms are contaminated by strong quasi-static noise, with an average signal-to-noise ratio (SNR) equal to 1.4. Applying the five models to these noisy ionograms, we show that the models can recover useful signals with IoU > 0.6. The highest accuracy is achieved by SA-UNet. For signals with less than 15% of samples in the data set, they can be recovered by Mask R-CNN to some degree (IoU > 0.2). In addition to the number of samples, we identify and examine the effects of three factors: (1) SNR, (2) shape of signal, (3) overlapping of signals on the recovery accuracy of different models. Our results indicate that FC-DenseNet24, DWT, Mask R-CNN and SA-UNet are capable of identifying signals from very noisy ionograms (SNR < 1.4), overlapping signals can be well identified by DWT, Mask R-CNN and SA-UNet, and that more elongated signals are better identified by all models.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Data Collection , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Taiwan
3.
Sensors (Basel) ; 21(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34640800

ABSTRACT

The technique of active ionospheric sounding by ionosondes requires sophisticated methods for the recovery of experimental data on ionograms. In this work, we applied an advanced algorithm of deep learning for the identification and classification of signals from different ionospheric layers. We collected a dataset of 6131 manually labeled ionograms acquired from low-latitude ionosondes in Taiwan. In the ionograms, we distinguished 11 different classes of the signals according to their ionospheric layers. We developed an artificial neural network, FC-DenseNet24, based on the FC-DenseNet convolutional neural network. We also developed a double-filtering algorithm to reduce incorrectly classified signals. That made it possible to successfully recover the sporadic E layer and the F2 layer from highly noise-contaminated ionograms whose mean signal-to-noise ratio was low, SNR = 1.43. The Intersection over Union (IoU) of the recovery of these two signal classes was greater than 0.6, which was higher than the previous models reported. We also identified three factors that can lower the recovery accuracy: (1) smaller statistics of samples; (2) mixing and overlapping of different signals; (3) the compact shape of signals.


Subject(s)
Algorithms , Neural Networks, Computer , Signal-To-Noise Ratio , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...