Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 9: 357, 2018.
Article in English | MEDLINE | ID: mdl-29755347

ABSTRACT

Cisplatin is a potent anti-cancer drug that has been widely used in the treatment of various cancers; however, cisplatin administration results in severe nephrotoxicity and impedes its clinical applications. In this study, we showed that honokiol, a polyphenol constituent extracted from Magnolia officinalis exhibited a short-term protective effect against cisplatin-induced damages in renal epithelial cells in vitro. The protective effects of honokiol were resulted from the combination of (1) reduced cellular oxidative stress ranging from 53 to 32% reduction during a 24-h incubation, (2) the maintenance of cellular antioxidant capacity and (3) the stabilization of cytoskeletal structure of the kidney epithelial cells. By promoting the polymerization of actin (1.6-fold increase) and tubulin (1.8-fold increase) cytoskeleton, honokiol not only maintained epithelial cell morphology, but also stabilized cellular localizations of tight junction protein Occludin and adhesion junction protein E-Cadherin. With stabilized junction protein complexes and structural polymerized cytoskeleton network, honokiol preserved epithelial cell polarity and morphology and thus reduced cisplatin-induced cell disruption and damages. Our data demonstrated for the first time that honokiol could counteract with cisplatin-induced damages in renal epithelial cells in vitro, future in vivo studies would further validate the potential clinical application of honokiol in cisplatin-based cancer treatments with reduced nephrotoxicity.

2.
J Reprod Dev ; 62(4): 337-43, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27009019

ABSTRACT

Successful fertilization requires viable and functional spermatozoa to recognize and fuse with the oocyte. In most mammalian species, mature spermatozoa are not capable of fertilizing the oocytes immediately after ejaculation. However, unlike somatic cells, spermatozoa, after leaving the testis, are transcriptionally and translationally silent; therefore, upon completion of spermiogenesis, spermatozoa carry only a minimal amount of essential proteins on their membranes as well as within their restricted volume of cytoplasm. To develop into a fully functional and competent sperm that is capable of successful fertilization, modifications of the sperm membrane surface during its transit in the reproductive tracts is critical. These post-spermatogenesis modifications advance the maturation of epididymal spermatozoa. In addition, components secreted into the lumen of the reproductive tracts that are later added onto the sperm membrane surface also regulate (inhibit or activate) the functions of the spermatozoa. This acquisition of additional proteins from the reproductive tracts may compensate for the inactivity of morphologically mature spermatozoa. In this review, we discuss the contributions of the male and female genital tracts to modifications of the sperm membrane surface at different stages of fertilization.


Subject(s)
Cell Membrane/physiology , Epididymis/physiology , Fertilization/physiology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology , Animals , Female , Humans , Male
3.
PLoS One ; 7(3): e32603, 2012.
Article in English | MEDLINE | ID: mdl-22412896

ABSTRACT

Acrosomal exocytosis (AE) is an intracellular multipoint fusion reaction of the sperm plasma membrane (PM) with the outer acrosomal membrane (OAM). This unique exocytotic event enables the penetration of the sperm through the zona pellucida of the oocyte. We previously observed a stable docking of OAM to the PM brought about by the formation of the trans-SNARE complex (syntaxin 1B, SNAP 23 and VAMP 3). By using electron microscopy, immunochemistry and immunofluorescence techniques in combination with functional studies and proteomic approaches, we here demonstrate that calcium ionophore-induced AE results in the formation of unilamellar hybrid membrane vesicles containing a mixture of components originating from the two fused membranes. These mixed vesicles (MV) do not contain the earlier reported trimeric SNARE complex but instead possess a novel trimeric SNARE complex that contained syntaxin 3, SNAP 23 and VAMP 2, with an additional SNARE interacting protein, complexin 2. Our data indicate that the earlier reported raft and capacitation-dependent docking phenomenon between the PM and OAM allows a specific rearrangement of molecules between the two docked membranes and is involved in (1) recruiting SNAREs and complexin 2 in the newly formed lipid-ordered microdomains, (2) the assembly of a fusion-driving SNARE complex which executes Ca(2+)-dependent AE, (3) the disassembly of the earlier reported docking SNARE complex, (4) the recruitment of secondary zona binding proteins at the zona interacting sperm surface. The possibility to study separate and dynamic interactions between SNARE proteins, complexin and Ca(2+) which are all involved in AE make sperm an ideal model for studying exocytosis.


Subject(s)
Acrosome/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Exocytosis/physiology , Nerve Tissue Proteins/metabolism , SNARE Proteins/metabolism , Sperm Capacitation/physiology , Acrosome/ultrastructure , Acrosome Reaction , Animals , Bicarbonates/pharmacology , Calcium/metabolism , Cell Membrane/metabolism , Male , Membrane Fusion , Protein Binding/drug effects , Protein Transport/drug effects , Proteomics , Secretory Vesicles/drug effects , Secretory Vesicles/metabolism , Sus scrofa
SELECTION OF CITATIONS
SEARCH DETAIL
...