Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 28(4): 045705, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-27981953

ABSTRACT

Bismuth (Bi) nanowires, well controlled in length and diameter, were prepared by using an anodic aluminum oxide (AAO) template-assisted molding injection process with a high cooling rate. A high performance atomic layer deposition (ALD)-capped bismuth-aluminum oxide (Bi-Al2O3) nanothermometer is demonstrated that was fabricated via a facile, low-cost and low-temperature method, including AAO templated-assisted molding injection and low-temperature ALD-capped processes. The thermal behaviors of Bi nanowires and Bi-Al2O3 nanocables were studied by in situ heating transmission electron microscopy. Linear thermal expansion of liquid Bi within native bismuth oxide nanotubes and ALD-capped Bi-Al2O3 nanocables were evaluated from 275 °C to 700 °C and 300 °C to 1000 °C, respectively. The results showed that the ALD-capped Bi-Al2O3 nanocable possesses the highest working temperature, 1000 °C, and the broadest operation window, 300 °C-1000 °C, of a thermal-expanding type nanothermometer. Our innovative approach provides another way of fabricating core-shell nanocables and to further achieve sensing local temperature under an extreme high vacuum environment.

2.
J Virol ; 88(17): 10092-109, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24965448

ABSTRACT

UNLABELLED: The orf47-orf46-orf45 gene cluster of Kaposi's sarcoma-associated herpesvirus (KSHV) is known to serially encode glycoprotein L (gL), uracil DNA glycosylase, and a viral tegument protein. Here, we identify two novel mRNA variants, orf47/45-A and orf47/45-B, alternatively spliced from a tricistronic orf47-orf46-orf45 mRNA that is expressed in the orf47-orf46-orf45 gene locus during the early stages of viral reactivation. The spliced gene products, ORF47/45-A and ORF47/45-B, consist of only a partial region of gL (ORF47), a unique 7-amino-acid motif, and the complete tegument protein ORF45. Like the ORF45 protein, ORF47/45-A and ORF47/45-B expressed in cells sufficiently activate the phosphorylation of p90 ribosomal S6 kinase (RSK) and extracellular signal-regulated protein kinase (ERK). However, unlike ORF45, both ORF47/45-A and ORF47/45-B contain a signal peptide sequence and are localized at the endoplasmic reticulum (ER). Additionally, we found that ORF47/45-A and ORF47/45-B have an extra function that mediates the upregulation of GRP78, a master regulator of ER homeostasis. The important event regarding GRP78 upregulation can be observed in all tested KSHV-positive cell lines after viral reactivation, and knockdown of GRP78 in cells significantly impairs viral lytic cycle progression, especially at late lytic stages. Compared with some other viral glycoproteins synthesized through the ER, our results strongly implicate that the ORF47/45 proteins may serve as key effectors for controlling GRP78 expression and ER homeostasis in cells. Taken together, our findings provide evidence showing the reciprocal association between the modulation of ER homeostasis and the progression of the KSHV lytic cycle. IMPORTANCE: Emerging evidence has shown that several viruses appear to use different strategies to control ER homeostasis for supporting their productive infections. The two parts of this study identify two aspects of the association between the regulation of ER homeostasis and the progression of the KSHV lytic cycle. The first part characterizes the function of two early lytic cycle proteins, ORF47/45-A and ORF47/45-B, on the activation of a major ER chaperone protein, GRP78. In addition to the ability to promote GRP78 upregulation, the ORF47/45 proteins also activate the phosphorylation of RSK and ERK. The second part reveals that upregulation of GRP78 is essential for the progression of the KSHV lytic cycle, especially at late stages. We therefore propose that activation of GRP78 expression by viral proteins at the early lytic stage may aid with the protection of host cells from severe ER stress and may directly involve the assembly or release of virions.


Subject(s)
DNA, Recombinant , Genes, Viral , Herpesvirus 8, Human/genetics , Immediate-Early Proteins/genetics , Multigene Family , DNA, Viral/chemistry , DNA, Viral/genetics , Endoplasmic Reticulum Chaperone BiP , Gene Expression Regulation, Viral , Herpesvirus 8, Human/physiology , Humans , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Viral/genetics , Sequence Analysis, DNA , Virus Replication
3.
Virology ; 413(2): 194-204, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21376359

ABSTRACT

Lytic cycle reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) is initiated by expression of the ORF50 gene. Here we show that YY1 protein specifically binds to the ORF50 promoter (ORF50p) region in vitro and in vivo. After treatment with chemical inducers, including sodium butyrate (SB) and TPA, the levels of YY1 protein are inversely correlated with the lytic induction of KSHV in cells. Overexpression of YY1 completely blocks the ORF50p activation in transient reporter assays, while mutation at the YY1 site in the ORF50p or knockdown of YY1 protein confers an enhancement of the ORF50p activation induced by SB and TPA. YY1 overexpression in a stable cell clone HH-B2(Dox-YY1) also inhibits expression of the ORF50 and its downstream lytic genes. On the other hand, a chimeric YY1 construct that links to its coactivator E1A can disrupt viral latency. These results imply that YY1 is involved in the regulation of KSHV reactivation.


Subject(s)
Herpesvirus 8, Human/physiology , Immediate-Early Proteins/metabolism , Trans-Activators/metabolism , YY1 Transcription Factor/metabolism , Cell Line , Down-Regulation , Gene Expression Regulation, Viral/physiology , Humans , Immediate-Early Proteins/genetics , Promoter Regions, Genetic , Protein Binding , RNA Interference , Trans-Activators/genetics , Virus Latency , YY1 Transcription Factor/genetics
4.
Biochem Pharmacol ; 81(5): 594-605, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21184746

ABSTRACT

In a previous study, BO-1051, an N-mustard linked with a DNA-affinic molecule, was shown to target various types of cancer cell lines. In the present study, we aimed to investigate the cytotoxicity, as well as the underlying mechanism, of BO-1051. We found that BO-1051 simultaneously induced apoptosis and autophagy in hepatocellular carcinoma cell lines. DNA double strand breaks induced by BO-1051 activated the ATM signaling pathway and subsequently resulted in caspase-dependent apoptosis. When autophagy was inhibited in its early or late stages, apoptosis was significantly enhanced. This result indicated autophagy as a cytoprotective effect against BO-1051-induced cell death. We further inhibited ATM activation using an ATM kinase inhibitor or ATM-specific siRNA and found that while apoptosis was blocked, autophagy also diminished in response to BO-1051. We not only determined a signaling pathway induced by BO-1051 but also clarified the linkage between DNA damage-induced apoptosis and autophagy. We also showed that BO-1051-induced autophagy acts as a cytoprotective reaction and downstream target of the ATM-signaling pathway. This research revealed autophagy as a universal cytoprotective response against DNA damage-inducing chemotherapeutic agents, including BO-1051, cisplatin, and doxorubicin, in hepatocellular carcinoma cell lines. Autophagy contributes to the remarkable drug resistance ability of liver cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Cycle Proteins/physiology , DNA-Binding Proteins/physiology , Nitrogen Mustard Compounds/pharmacology , Protein Serine-Threonine Kinases/physiology , Tumor Suppressor Proteins/physiology , Ataxia Telangiectasia Mutated Proteins , Carcinoma, Hepatocellular , Cell Line, Tumor , DNA Damage , Humans , Liver Neoplasms , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...