Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Psychophysiology ; 60(12): e14375, 2023 12.
Article in English | MEDLINE | ID: mdl-37417320

ABSTRACT

Singleton distractors may inadvertently capture attention, interfering with the task at hand. The underlying neural mechanisms of how we prevent or handle distractor interference remain elusive. Here, we varied the type of salient distractor introduced in a visual search task: the distractor could be defined in the same (shape) dimension as the target, a different (color) dimension, or a different (tactile) modality (intra-dimensional, cross-dimensional, and, respectively, cross-modal distractor, all matched for physical salience); and besides behavioral interference, we measured lateralized electrophysiological indicators of attentional selectivity (the N2pc, Ppc, PD , CCN/CCP, CDA, and cCDA). The results revealed the intra-dimensional distractor to produce the strongest reaction-time interference, associated with the smallest target-elicited N2pc. In contrast, the cross-dimensional and cross-modal distractors did not engender any significant interference, and the target-elicited N2pc was comparable to the condition in which the search display contained only the target singleton, thus ruling out early attentional capture. Moreover, the cross-modal distractor elicited a significant early CCN/CCP, but did not influence the target-elicited N2pc, suggesting that the tactile distractor is registered by the somatosensory system (rather than being proactively suppressed), without, however, engaging attention. Together, our findings indicate that, in contrast to distractors defined in the same dimension as the target, distractors singled out in a different dimension or modality can be effectively prevented to engage attention, consistent with dimension- or modality-weighting accounts of attentional priority computation.


Subject(s)
Attention , Electroencephalography , Humans , Electroencephalography/methods , Attention/physiology , Reaction Time/physiology , Electrophysiological Phenomena , Visual Perception/physiology
2.
Psychophysiology ; 60(10): e14351, 2023 10.
Article in English | MEDLINE | ID: mdl-37277926

ABSTRACT

A salient distractor interferes less with visual search if it appears at a location where it is likely to occur, referred to as distractor-location probability cueing. Conversely, if the current target appears at the same location as a distractor on the preceding trial, search is impeded. While these two location-specific "suppression" effects reflect long-term, statistically learnt and short-term, inter-trial adaptations of the system to distractors, it is unclear at what stage(s) of processing they arise. Here, we adopted the additional-singleton paradigm and examined lateralized event-related potentials (L-ERPs) and lateralized alpha (8-12 Hz) power to track the temporal dynamics of these effects. Behaviorally, we confirmed both effects: reaction times (RTs) interference was reduced for distractors at frequent versus rare (distractor) locations, and RTs were delayed for targets that appeared at previous distractor versus non-distractor locations. Electrophysiologically, the statistical-learning effect was not associated with lateralized alpha power during the pre-stimulus period. Rather, it was seen in an early N1pc referenced to the frequent distractor location (whether or not a distractor or a target occurred there), indicative of a learnt top-down prioritization of this location. This early top-down influence was systematically modulated by (competing) target- and distractor-generated bottom-up saliency signals in the display. In contrast, the inter-trial effect was reflected in an enhanced SPCN when the target was preceded by a distractor at its location. This suggests that establishing that an attentionally selected item is a task-relevant target, rather than an irrelevant distractor, is more demanding at a previously "rejected" distractor location.


Subject(s)
Attention , Learning , Humans , Attention/physiology , Learning/physiology , Reaction Time/physiology , Evoked Potentials/physiology , Cues
3.
Soc Cogn Affect Neurosci ; 14(6): 645-655, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31119291

ABSTRACT

Working memory capacity (WMC) can predict conflict control ability. Measures of both abilities are impaired by anxiety, which is often inversely linked with mindfulness. It has been shown that a combination of high mindfulness and low anxiety is associated with better conflict control and WMC. The current study explored the electrophysiology related to such behavioral differences. Two experimental groups, one with high mindfulness and low anxiety (HMLA) and one with low mindfulness and high anxiety (LMHA), performed a color Stroop task and a change detection task, both with simultaneous electroencephalogram (EEG) recording. An advanced EEG analytical approach, Hilbert-Huang transform (HHT) analysis, was employed. This is regarded as a robust method to analyze non-linear and non-stationary signals. Lower delta activity at posterior temporal and occipital regions was seen in the HMLA group for the Stroop conflict conditions and might be generally associated with higher accuracy in this group and indicative of higher attentiveness. Higher accuracy rates and WMC were seen in the HMLA group and might be specifically associated with the higher alpha activity observed in prefrontal cortex, fronto-central and centro-parietal regions in this group. Future studies should explore how mindfulness and anxiety can independently affect these cognitive functions and their associated neurophysiology.


Subject(s)
Anxiety/psychology , Brain/physiology , Cognition/physiology , Memory, Short-Term/physiology , Mindfulness , Adolescent , Attention/physiology , Brain Mapping , Electroencephalography , Female , Humans , Male , Stroop Test , Young Adult
4.
Front Psychol ; 9: 1105, 2018.
Article in English | MEDLINE | ID: mdl-29973902

ABSTRACT

[This corrects the article on p. 627 in vol. 9, PMID: 29780338.].

5.
Front Integr Neurosci ; 12: 17, 2018.
Article in English | MEDLINE | ID: mdl-29867385

ABSTRACT

Prior studies have reported that meditation may improve cognitive functions and those related to attention in particular. Here, the dynamic process of attentional control, which allows subjects to focus attention on their current interests, was investigated. Concentrative meditation aims to cultivate the abilities of continuous focus and redirecting attention from distractions to the object of focus during meditation. However, it remains unclear how meditation may influence attentional reorientation, which involves interaction between both top-down and bottom-up processes. We aimed to investigate the modulating effect of meditation on the mechanisms of contingent reorienting by employing a rapid serial visual presentation (RSVP) task in conjunction with electrophysiological recording. We recruited 26 meditators who had an average of 2.9 years of meditation experience and a control group comprising 26 individuals without any prior experience of meditation. All subjects performed a 30-min meditation and a rest condition with data collected pre- and post-intervention, with each intervention given on different days. The state effect of meditation improved overall accuracy for all subjects irrespective of their group. A group difference was observed across interventions, showing that meditators were more accurate and more efficient at attentional suppression, represented by a larger Pd (distractor positive) amplitude of event related modes (ERMs), for target-like distractors than the control group. The findings suggested that better attentional control with respect to distractors might be facilitated by acquiring experience of and skills related to meditation training.

6.
Front Psychol ; 9: 627, 2018.
Article in English | MEDLINE | ID: mdl-29780338

ABSTRACT

There are several ways in which cognitive and neurophysiological parameters have been consistently used to explain the variability in cognitive ability between people. However, little has been done to explore how such cognitive abilities are influenced by differences in personality traits. Dispositional mindfulness and anxiety are two inversely linked traits that have been independently attributed to a range of cognitive functions. The current study investigated these two traits in combination along with measures of the attentional network, cognitive inhibition, and visual working memory (VWM) capacity. A total of 392 prospective participants were screened to select two experimental groups each of 30 healthy young adults, with one having high mindfulness and low anxiety (HMLA) and the second having low mindfulness and high anxiety (LMHA). The groups performed an attentional network task, a color Stroop task, and a change detection test of VWM capacity. Results showed that the HMLA group was more accurate than the LMHA group on the Stroop and change detection tasks. Additionally, the HMLA group was more sensitive in detecting changes and had a higher WMC than the LMHA group. This research adds to the literature that has investigated mindfulness and anxiety independently with a comprehensive investigation of the effects of these two traits in conjunction on executive function.

SELECTION OF CITATIONS
SEARCH DETAIL
...