Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 20(5): 2698-2704, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31635604

ABSTRACT

In the present study, a novel AgOx/BiPO4 sensor was successfully prepared and used for detecting trans-resveratrol. Prepared samples were characterized using methods including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy. The results demonstrate that the AgOx/BiPO4 is composed of AgO, Ag2O, and BiPO4. In addition, a cyclic voltammetry method was used to measure resveratrol concentration using the electrochemical sensor based on AgOx/BiPO4. AgOx/BiPO4 presents a well-defined voltammetric peak at approximately +460 mV versus Ag/AgCl in phosphate-buffered saline solution. In addition, the sensor exhibits a detection limit of 1.0×10-7 M, and the wide dynamic concentration ranges from 2.0×10-7 to 12.5×10-6 M. Stability and interference tests were performed for 20 days. A possible mechanism for AgOx/BiPO4 detection of trans-resveratrol detection is proposed.

2.
Molecules ; 24(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30743989

ABSTRACT

Resveratrol (tran-3,5,4'-trihydroxystibene, RSV) is a kind of polyphenol which has anti-inflammatory, antioxidant, anti-allergy, and anti-cancer properties, as well as being a scavenger of free radicals and preventing cardiovascular diseases. However, it is quite unstable in light, heat, and other conditions, and decays easily due to environmental factors. For these reasons, this study used a new type of carrier, transfersome, to encapsulate RSV. Transfersome consists of phosphatidyl choline (PC) from a liposomal system and non-ionic edge activators (EA). EA are an important ingredient in the formulation of transfersome; they can enhance the flexibility of the lipid bimolecular membrane of transfersome. Due to its ultradeformability, it also allows drugs to penetrate the skin, even through the stratum corneum. We hope that this new encapsulation technique will improve the stability and enhance the permeability of RSV. Concluding all the tested parameters, the best production condition was 5% PC/EA (3:1) and 5% ethanol in distilled water, with an ultrasonic bath and stirring at 500 rpm, followed by high pressure homogenization. The optimal particle size was 40.13 ± 0.51 nm and the entrapment efficiency (EE) was 59.93 ± 0.99%. The results of antioxidant activity analysis showed that transfersomes were comparable to the RSV group (unencapsulated). During in vitro transdermal delivery analysis, after 6 h, D1-20(W) increased 27.59% by accumulation. Cell viability assay showed that the cytotoxicity of D3-80(W) was reduced by 34.45% compared with the same concentration of RSV. Therefore, we successfully prepared RSV transfersomes and also improved the stability, solubility, and safety of RSV.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Liposomes , Resveratrol/chemistry , Resveratrol/pharmacology , Administration, Cutaneous , Animals , Antioxidants/administration & dosage , Cell Survival/drug effects , Dose-Response Relationship, Drug , Melanoma, Experimental , Mice , Particle Size , Resveratrol/administration & dosage , Skin Absorption , Solubility
3.
Biomed Res Int ; 2018: 3130607, 2018.
Article in English | MEDLINE | ID: mdl-30581850

ABSTRACT

Periodontitis is an inflammatory disease involving complex interactions between oral microorganisms and the host immune response. Understanding the structure of the microbiota community associated with periodontitis is essential for improving classifications and diagnoses of various types of periodontal diseases and will facilitate clinical decision-making. In this study, we used a 16S rRNA metagenomics approach to investigate and compare the compositions of the microbiota communities from 76 subgingival plagues samples, including 26 from healthy individuals and 50 from patients with periodontitis. Furthermore, we propose a novel feature selection algorithm for selecting features with more information from many variables with a combination of these features and machine learning methods were used to construct prediction models for predicting the health status of patients with periodontal disease. We identified a total of 12 phyla, 124 genera, and 355 species and observed differences between health- and periodontitis-associated bacterial communities at all phylogenetic levels. We discovered that the genera Porphyromonas, Treponema, Tannerella, Filifactor, and Aggregatibacter were more abundant in patients with periodontal disease, whereas Streptococcus, Haemophilus, Capnocytophaga, Gemella, Campylobacter, and Granulicatella were found at higher levels in healthy controls. Using our feature selection algorithm, random forests performed better in terms of predictive power than other methods and consumed the least amount of computational time.


Subject(s)
Bacteria/genetics , Chronic Periodontitis/microbiology , Gingiva/microbiology , Microbiota/genetics , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Tooth/microbiology
4.
Int J Mol Sci ; 16(1): 1096-110, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25569088

ABSTRACT

Single nucleotide polymorphisms (SNPs) play a fundamental role in human genetic variation and are used in medical diagnostics, phylogeny construction, and drug design. They provide the highest-resolution genetic fingerprint for identifying disease associations and human features. Haplotypes are regions of linked genetic variants that are closely spaced on the genome and tend to be inherited together. Genetics research has revealed SNPs within certain haplotype blocks that introduce few distinct common haplotypes into most of the population. Haplotype block structures are used in association-based methods to map disease genes. In this paper, we propose an efficient algorithm for identifying haplotype blocks in the genome. In chromosomal haplotype data retrieved from the HapMap project website, the proposed algorithm identified longer haplotype blocks than an existing algorithm. To enhance its performance, we extended the proposed algorithm into a parallel algorithm that copies data in parallel via the Hadoop MapReduce framework. The proposed MapReduce-paralleled combinatorial algorithm performed well on real-world data obtained from the HapMap dataset; the improvement in computational efficiency was proportional to the number of processors used.


Subject(s)
Algorithms , Computational Biology , Genome, Human , Genome-Wide Association Study , Haplotypes , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide
5.
Biomed Mater Eng ; 24(1): 1383-9, 2014.
Article in English | MEDLINE | ID: mdl-24212035

ABSTRACT

SNPs are the most abundant forms of genetic variations amongst species; the association studies between complex diseases and SNPs or haplotypes have received great attention. However, these studies are restricted by the cost of genotyping all SNPs; thus, it is necessary to find smaller subsets, or tag SNPs, representing the rest of the SNPs. In fact, the existing tag SNP selection algorithms are notoriously time-consuming. An efficient algorithm for tag SNP selection was presented, which was applied to analyze the HapMap YRI data. The experimental results show that the proposed algorithm can achieve better performance than the existing tag SNP selection algorithms; in most cases, this proposed algorithm is at least ten times faster than the existing methods. In many cases, when the redundant ratio of the block is high, the proposed algorithm can even be thousands times faster than the previously known methods. Tools and web services for haplotype block analysis integrated by hadoop MapReduce framework are also developed using the proposed algorithm as computation kernels.


Subject(s)
Algorithms , Computational Biology , Polymorphism, Single Nucleotide , Chromosomes/ultrastructure , Computer Simulation , Genotype , Haplotypes , Humans , Pattern Recognition, Automated , Reproducibility of Results , Software
6.
J Chromatogr A ; 1218(3): 524-33, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21176836

ABSTRACT

An effective method has been developed for quantitative determination of six bile acids including lithocholic acid (LCA), deoxycholic acid (DCA), chenodeoxycholic acid (CDCA), hydodeoxycholic acid (HDCA), cholic acid (CA) and ursodeoxycholic acid (UDCA) in biological tissues including pig liver, pig kidney and bovine liver by gas chromatography-chemical ionization/tandem mass spectrometry (GC-CI/MS/MS). Camphor-10-sulphonic acid (CSA) was proposed as effective catalyst for bile acid derivatization. Reactions were accelerated ultrasonically. The effects of different catalysts and reaction times on derivatization efficiency were evaluated and optimized. Bile acids were determined as methyl ester-trimethylsilyl ether and methyl ester-acetate derivatives. The efficiency of trimethylsilylation and acetylation was evaluated. Trimethylsilylation was done with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) as the trimethylsilyl donating reagent in a ultrasonic bath for 20 min. Acetylation was done in pyridine with acetic anhydride at 40-45°C for 4 h. The former reaction was faster than the latter. Thus, trimethylsilylation was employed for the quantitative analysis. Negligible interferences from sterols in biological matrices were observed when the biological samples were treated with solid phase extraction before GC-CI/MS/MS. The linearity, reproducibility, detection limit and recovery were evaluated under the optimized conditions. Satisfactory results were obtained when bile acid derivatives of LCA, CDCA, HDCA, and UDCA were determined with total ion chromatograms (TIC) while DCA and CA were determined with extracted ion chromatograms (EIC), respectively. The detection limits (S/N=3) for six bile acids in biological tissues were ranging from 0.40 to 1.6 ng/mL and the recoveries indicated that the proposed method was feasible for the determination of trace bile acids in the biological samples studied. The experimental results for the animal tissues purchased from five different markets were compared. Interestingly, all of the six bile acids were present in pig liver while only the dihydroxy bile acids, DCA, CDCA and HDCA were found in pig kidney. In addition to DCA and CDCA, trihydroxy bile acid, CA, are the major bile acids in bovine liver.


Subject(s)
Bile Acids and Salts/analysis , Gas Chromatography-Mass Spectrometry/methods , Kidney/chemistry , Liver/chemistry , Tandem Mass Spectrometry/methods , Animals , Camphor/analogs & derivatives , Cattle , Esterification , Linear Models , Reproducibility of Results , Sensitivity and Specificity , Swine
7.
Anal Chem ; 78(21): 7432-9, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17073409

ABSTRACT

Spatially resolved laser-induced breakdown spectroscopy (SRLIBS) was used for the characterization of aluminum and silicon in nickel-based alloys. The very low invasiveness of the technique was one of the figures of merit of LIBS; however, the relative complexity of the instrument often hindered the widely acceptance of LIBS. Spatially resolved LIBS could provide accuracy and precision comparable to those obtained with temporally resolved LIBS (TRLIBS). In the nongated spatially resolved LIBS, the maximum atomic emission could be obtained with relative low continuum background emission at optimum observation spatial position. The study was done with a Nd:YAG laser at 532 nm, 3.0 mJ laser energy, and 0.2 mbar in argon. The experimental results obtained under optimum conditions were compared to those obtained with TRLIBS. SRLIBS gave reliable results without the tedious optimization of the delay time and gate width.

SELECTION OF CITATIONS
SEARCH DETAIL
...