Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675812

ABSTRACT

Human papillomavirus (HPV) remains a global health concern because it contributes to the initiation of various HPV-associated cancers such as anal, cervical, oropharyngeal, penile, vaginal, and vulvar cancer. In HPV-associated cancers, oncogenesis begins with an HPV infection, which is linked to the activation of the Janus protein tyrosine kinase (JAK)/STAT signaling pathway. Various STAT signaling pathways, such as STAT3 activation, have been well documented for their tumorigenic role, yet the role of STAT1 in tumor formation remains unclear. In the current study, STAT1-/- mice were used to investigate the role of STAT1 in the tumorigenesis of a spontaneous HPV E6/E7-expressing oral tumor model. Subsequently, our candidate HPV DNA vaccine CRT/E7 was administered to determine whether the STAT1-/- host preserves a therapeutic-responsive tumor microenvironment. The results indicated that STAT1-/- induces robust tumorigenesis, yet a controlled tumor response was attained upon CRT/E7 vaccination. Characterizing this treatment effect, immunological analysis found a higher percentage of circulating CD4+ and CD8+ T cells and tumor-specific cytotoxic T cells. In addition, a reduction in exhaustive lymphocyte activity was observed. Further analysis of a whole-cell tumor challenge affirmed these findings, as spontaneous tumor growth was more rapid in STAT1-/- mice. In conclusion, STAT1 deletion accelerates tumorigenesis, but STAT1-/- mice maintains immunocompetency in CRT/E7 treatments.

2.
J Transl Med ; 22(1): 378, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649894

ABSTRACT

BACKGROUND: Bacteria-based cancer therapy have demonstrated innovative strategies to combat tumors. Recent studies have focused on gram-negative bacterial outer membrane vesicles (OMVs) as a novel cancer immunotherapy strategy due to its intrinsic properties as a versatile carrier. METHOD: Here, we developed an Human Papillomavirus (HPV)-associated E7 antigen displaying Salmonella-derived OMV vaccine, utilizing a Poly(L-arginine) cell penetrating peptide (CPP) to enhance HPV16 E7 (aa49-67) H-2 Db and OMV affinity, termed SOMV-9RE7. RESULTS: Due to OMV's intrinsic immunogenic properties, SOMV-9RE7 effectively activates adaptive immunity through antigen-presenting cell uptake and antigen cross-presentation. Vaccination of engineered OMVs shows immediate tumor suppression and recruitment of infiltrating tumor-reactive immune cells. CONCLUSION: The simplicity of the arginine coating strategy boasts the versatility of immuno-stimulating OMVs that can be broadly implemented to personalized bacterial immunotherapeutic applications.


Subject(s)
Arginine , Cancer Vaccines , Papillomavirus E7 Proteins , Papillomavirus E7 Proteins/immunology , Cancer Vaccines/immunology , Humans , Animals , Bacterial Outer Membrane/immunology , Mice, Inbred C57BL , Female
3.
Oncoimmunology ; 13(1): 2298444, 2024.
Article in English | MEDLINE | ID: mdl-38170154

ABSTRACT

Bacteria-based cancer therapy employs various strategies to combat tumors, one of which is delivering tumor-associated antigen (TAA) to generate specific immunity. Here, we utilized a poly-arginine extended HPV E7 antigen (9RE7) for attachment on Salmonella SL7207 outer membrane to synthesize the bacterial vaccine Salmonella-9RE7 (Sal-9RE7), which yielded a significant improvement in the amount of antigen presentation compared to the previous lysine-extended antigen coating strategy. In TC-1 tumor mouse models, Sal-9RE7 monotherapy decreased tumor growth by inducing E7 antigen-specific immunity. In addition, pairing Sal-9RE7 with adjuvant Albumin-IFNß (Alb-IFNß), a protein cytokine fusion, the combination significantly increased the antitumor efficacy and enhanced immunogenicity in the tumor microenvironment (TME). Our study made a significant contribution to personalized bacterial immunotherapy via TAA delivery and demonstrated the advantage of combination therapy.


Subject(s)
Interferon Type I , Neoplasms , Animals , Mice , Papillomavirus E7 Proteins/genetics , CD8-Positive T-Lymphocytes , Neoplasms/therapy , Antigens, Neoplasm , Immunotherapy , Salmonella , Tumor Microenvironment
4.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37917174

ABSTRACT

Even with the prolific clinical use of next-generation cancer therapeutics, many tumors remain unresponsive or become refractory to therapy, creating a medical need. In cancer, DCs are indispensable for T cell activation, so there is a restriction on cytotoxic T cell immunity if DCs are not present in sufficient numbers in the tumor and draining lymph nodes to take up and present relevant cancer antigens. To address this bottleneck, we developed a therapeutic based on albumin fused with FMS-related tyrosine kinase 3 ligand (Alb-Flt3L) that demonstrated superior pharmacokinetic properties compared with Flt3L, including significantly longer half-life, accumulation in tumors and lymph nodes, and cross-presenting-DC expansion following a single injection. We demonstrated that Alb-Flt3L, in combination with standard-of-care chemotherapy and radiation therapy, serves as an in situ vaccination strategy capable of engendering polyclonal tumor neoantigen-specific immunity spontaneously. In addition, Alb-Flt3L-mediated tumor control synergized with immune checkpoint blockade delivered as anti-PD-L1. The mechanism of action of Alb-Flt3L treatment revealed a dependency on Batf3, type I IFNs, and plasmacytoid DCs. Finally, the ability of Alb-Flt3L to expand human DCs was explored in humanized mice. We observed significant expansion of human cross-presenting-DC subsets, supporting the notion that Alb-Flt3L could be used clinically to modulate human DC populations in future cancer therapeutic regimens.


Subject(s)
Dendritic Cells , Neoplasms , Mice , Humans , Animals , Membrane Proteins/metabolism , Antigens , Immunotherapy , Vaccination
5.
mBio ; 14(5): e0212123, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37791765

ABSTRACT

IMPORTANCE: Respectively, HPV16 and HPV18 cause 50% and 20% of cervical cancer cases globally. Viral proteins E6 and E7 are obligate drivers of oncogenic transformation. We recently developed a candidate therapeutic DNA vaccine, pBI-11, that targets HPV16 and HPV18 E6 and E7. Single-site intramuscular delivery of pBI-11 via a needle elicited therapeutic anti-tumor effects in mice and is now being tested in high-risk human papillomavirus+ head and neck cancer patients (NCT05799144). Needle-free biojectors such as the Tropis device show promise due to ease of administration, high patient acceptability, and the possibility of improved delivery. For example, vaccination of patients with the ZyCoV-D DNA vaccine using the Tropis device is effective against COVID19, well tolerated, and licensed. Here we show that split-dose, multi-site administration and intradermal delivery via the Tropis biojector increase the delivery of pBI-11 DNA vaccine, enhance HPV antigen-specific CD8+ T-cell responses, and improve anti-tumor therapeutic effects, suggesting its translational potential to treat HPV16/18 infection and disease.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Vaccines, DNA , Female , Humans , Animals , Mice , Human papillomavirus 16/genetics , Vaccines, DNA/genetics , Vaccines, DNA/therapeutic use , Human papillomavirus 18/genetics , Oncogene Proteins, Viral/genetics , Papillomavirus E7 Proteins/genetics , Uterine Cervical Neoplasms/prevention & control , Papillomavirus Infections/prevention & control , Vaccination , Immunity
6.
J Biomed Sci ; 29(1): 80, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36224625

ABSTRACT

BACKGROUND: Human Papillomavirus type 18 (HPV18) is a high-risk HPV that is commonly associated with cervical cancer. HPV18 oncogenes E6 and E7 are associated with the malignant transformation of cells, thus the identification of human leukocyte antigen (HLA)-restricted E6/E7 peptide-specific CD8 + T cell epitopes and the creation of a HPV18 E6/E7 expressing cervicovaginal tumor in HLA-A2 transgenic mice will be significant for vaccine development. METHODS: In the below study, we characterized various human HLA class I-restricted HPV18 E6 and E7-specific CD8 + T cells mediated immune responses in HLA class I transgenic mice using DNA vaccines encoding HPV18E6 and HPV18E7. We then confirmed HLA-restricted E6/E7 specific CD8 + T cell epitopes using splenocytes from vaccinated mice stimulated with HPV18E6/E7 peptides. Furthermore, we used oncogenic DNA plasmids encoding HPV18E7E6(delD70), luciferase, cMyc, and AKT to create a spontaneous cervicovaginal carcinoma model in HLA-A2 transgenic mice. RESULTS: Therapeutic HPV18 E7 DNA vaccination did not elicit any significant CD8 + T cell response in HLA-A1, HLA-24, HLA-B7, HLA-B44 transgenic or wild type C57BL/6 mice, but it did generate a strong HLA-A2 and HLA-A11 restricted HPV18E7-specific CD8 + T cell immune response. We found that a single deletion of aspartic acid (D) at location 70 in HPV18E6 DNA abolishes the presentation of HPV18 E6 peptide (aa67-75) by murine MHC class I. We found that the DNA vaccine with this mutant HPV18 E6 generated E6-specific CD8 + T cells in HLA-A2. HLA-A11, HLA-A24 and HLA-b40 transgenic mice. Of note, HLA-A2 restricted, HPV18 E7 peptide (aa7-15)- and HPV18 E6 peptide (aa97-105)-specific epitopes are endogenously processed by HPV18 positive Hela-AAD (HLA-A*0201/Dd) cells. Finally, we found that injection of DNA plasmids encoding HPV18E7E6(delD70), AKT, cMyc, and SB100 can result in the development of adenosquamous carcinoma in the cervicovaginal tract of HLA-A2 transgenic mice. CONCLUSIONS: We characterized various human HLA class I-restricted HPV18 E6/E7 peptide specific CD8 + T cell epitopes in human HLA class I transgenic mice. We demonstrated that HPV18 positive Hela cells expressing chimeric HLA-A2 (AAD) do present both HLA-A2-restricted HPV18 E7 (aa7-15)- and HPV18 E6 (aa97-105)-specific CD8 + T cell epitopes. A mutant HPV18E6 that had a single deletion at location 70 obliterates the E6 presentation by murine MHC class I and remains oncogenic. The identification of these human MHC restricted HPV antigen specific epitopes as well as the HPV18E6/E7 expressing adenosquamous cell carcinoma model may have significant future translational potential.


Subject(s)
Carcinoma, Adenosquamous , Oncogene Proteins, Viral , Papillomavirus Infections , Vaccines, DNA , Animals , Aspartic Acid , CD8-Positive T-Lymphocytes , Carcinoma, Adenosquamous/complications , Epitopes, T-Lymphocyte/genetics , Female , HLA-A Antigens , HLA-A1 Antigen , HLA-A11 Antigen , HLA-A2 Antigen/genetics , HLA-A24 Antigen , HLA-B40 Antigen , HLA-B44 Antigen , HLA-B7 Antigen , HeLa Cells , Human papillomavirus 18 , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins, Viral/genetics , Papillomavirus Infections/complications , Peptides , Proto-Oncogene Proteins c-akt , T-Lymphocytes, Cytotoxic , Vaccines, DNA/genetics
7.
J Biomed Sci ; 29(1): 57, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35962391

ABSTRACT

BACKGROUND: For centuries, microbial-based agents have been investigated as a therapeutic modality for the treatment of cancer. In theory, these methods would be cheap to produce, broadly applicable in a wide array of cancer types, and could synergize with other cancer treatment strategies. We aimed to assess the efficacy of combining microbial-based therapy using Salmonella SL7207 with interleukin-2 (IL-2), a potent immunostimulatory agent, in the treatment of murine colon carcinoma. METHODS: Female BALB/c mice were implanted subcutaneously with CT26 tumors, a model of colon carcinoma. Mice bearing tumors were selected and administered Albumin-IL-2 (Alb-IL2), a fusion protein, for further analysis of anticancer effect. RESULTS: We demonstrated that Salmonella SL7207, a genetically modified strain of Salmonella enterica serovar Typhimurium, preferentially accumulates in the tumor microenvironment, potentiating it to stimulate localized innate immunity. We delivered IL-2 as a fusion protein, Alb-IL2, which we demonstrate to have preferential accumulation properties, bringing it to the tumor and secondary lymphoid organs. Treatment of tumor-bearing mice with Salmonella + Alb-IL2 leads to superior tumor control and enhanced overall survival compared to controls. When assessing immunological factors contributing to our observed tumor control, significantly enhanced T cell population with superior effector function was observed in mice treated with Salmonella + Alb-IL2. We confirmed that these T cells were indispensable to the observed tumor control through antibody-mediated T cell depletion experiments. CONCLUSIONS: These findings highlight the ability of Salmonella + Alb-IL2 to serve as a novel therapeutic approach to induce T cell-mediated antitumor immunity and exert long-term tumor control in a murine model of cancer.


Subject(s)
Carcinoma , Colonic Neoplasms , Albumins , Animals , Female , Interleukin-2 , Mice , Salmonella , Tumor Microenvironment
9.
mBio ; 13(1): e0325221, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089069

ABSTRACT

Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC) is a growing global health problem. HPV16 has been attributed to a majority of HPV-associated HNSCCs. In order to test candidate immunotherapies, we developed a spontaneous HPV16-driven HNSCC model in HLA-A2 (AAD) transgenic mice. We sought to eliminate the confounding effects of dominant HPV antigen presentation through murine major histocompatibility complex class I (MHC-I) via epitope mutagenesis (without compromising tumorigenicity). We generated HPV16 E6(R55K)(delK75) and E7(N53S) expression constructs with mutations in known dominant H-2Db epitopes and characterized their presentation through murine and human MHC-I molecules using in vitro and in vivo activation of HPV16 E6/E7 antigen-specific CD8+ T cells. In addition, we tested the ability of E6(R55K)(delK75) and E7(N53S) for oncogenicity. The mutated E7(N53S) abolished the presentation of murine H-2Db-restricted HPV16 E7 peptide (i.e., amino acids [aa] 49 to 57) cytotoxic T lymphocyte (CTL) epitope and resulted in HLA-A2-restricted presentation of the HPV16 E7 (aa 11 to 20)-specific CTL epitope. The mutated E6(R55K)(delK75) abolished the activation of murine MHC-I-restricted E6-specific CD8+ T cell-mediated immune responses in C57BL/6 mice. In addition, the vaccination led to the activation of human HLA-A2-restricted E6-specific CD8+ T cell-mediated immune responses in HLA-A2 (AAD) transgenic mice. Injection of DNA plasmids encoding LucE7(N53S)E6(R55K)(delK75), AKT, c-Myc, and SB100 followed by electroporation results in development of squamous cell carcinoma in the oral/pharyngeal cavity of all of the HLA-A2 (AAD) transgenic mice (5/5), with 2/5 tumor-bearing mice developing metastatic carcinoma in the neck lymph nodes. IMPORTANCE Our data indicate that mutated HPV16 E6(R55K)(delK75) and mutated HPV16 E7(N53S) DNA abolishes the presentation of HPV16 E6 and E7 through murine MHC-I and results in their presentation through human HLA-A2 molecules. Additionally, the mutated HPV16 E6 and E7 remain oncogenic. Our approach is potentially applicable to different human MHC-I transgenic mice for the identification of human MHC-I restricted HPV16 E6/E7-specific CTL epitopes as well as the generation of spontaneous HPV E6/E7-expressing oral/pharyngeal carcinoma.


Subject(s)
Head and Neck Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Mice , Animals , Humans , HLA-A2 Antigen , Mice, Transgenic , CD8-Positive T-Lymphocytes , Squamous Cell Carcinoma of Head and Neck , Human papillomavirus 16/metabolism , Mice, Inbred C57BL , Papillomavirus E7 Proteins , Histocompatibility Antigens Class I/metabolism , Epitopes, T-Lymphocyte
10.
Front Immunol ; 12: 755995, 2021.
Article in English | MEDLINE | ID: mdl-34804041

ABSTRACT

The phospholipid phosphatidylserine (PS) is naturally maintained on the cytoplasmic side of the plasma membrane. Independent of apoptosis, PS is redistributed to the surface of CD8 T cells in response to TCR-mediated activation. Annexin V (AnnV) is a protein known to bind PS with high affinity and has been effectively utilized to anchor antigen to the surface of CD8 T cells. To expand these studies, we aimed to exploit TCR activation driven PS exposure as a target to deliver cytokine, namely interleukin-2 (IL-2), to the surface of CD8 T cells. This was accomplished using a novel chimeric fusion protein of annexin V and interleukin 2 (AnnV-IL2). In vitro analysis revealed that AnnV-IL2 is able to specifically bind PS on the T cell surface following TCR stimulation. Consequently, AnnV-IL2 proved to be significantly more effective at enhancing T cell activation compared to recombinant IL-2. In vivo, AnnV-IL2 promotes robust expansion of antigen-specific cells capable of interferon gamma (IFNγ) production when administered following peptide vaccination. Importantly, upon antigen rechallenge, AnnV-IL2 treatment mice demonstrated a stronger secondary expansion, indicating durability of AnnV-IL2 mediated responses. Our data supports the use of AnnV-IL2 to modulate antigen-specific T cell immunity and demonstrates that the PS-AnnV axis is a feasible mechanism to target diverse cargo to CD8 T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Phosphatidylserines/metabolism , Animals , Annexin A5/immunology , Annexin A5/metabolism , CD8-Positive T-Lymphocytes/metabolism , Female , Interleukin-2/immunology , Mice , Mice, Transgenic , Phosphatidylserines/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
11.
Cell Rep ; 37(3): 109838, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34648735

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads, variants with enhanced virulence and transmissibility have emerged. Although in vitro systems allow rapid characterization, they do not fully recapitulate the dynamic interaction of virions and neutralizing antibodies in the airway. Here, we demonstrate that the N501Y variant permits respiratory infection in unmodified mice. We utilize N501Y to survey in vivo pseudovirus infection dynamics and susceptibility to reinfection with the L452R (Los Angeles), K417N + E484K (South Africa), and L452R + K417N + E484Q (India) variants. Human coronavirus disease 2019 (COVID-19)+ or vaccinated antibody isotypes, titers, variant receptor binding domain (RBD) binding, and neutralization potential are studied, revealing numerous significant correlations. Immune escape of the K417N + E484K variant is observed because infection can be appreciated in the nasopharynx, but not lungs, of mice transferred with low-antibody-tier plasma. Conversely, near-complete protection is observed in animals receiving high-antibody-tier plasma, a phenomenon that can only be appreciated in vivo.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Cell Line , Cricetinae , Genetic Variation , HEK293 Cells , Humans , Immune System , Immunization, Passive/methods , In Vitro Techniques , Mice , Mutation , Nasopharynx/virology , Protein Binding , Recombinant Proteins/metabolism , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Serotherapy
12.
J Biomed Sci ; 28(1): 34, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33926459

ABSTRACT

BACKGROUND: The spread of SARS-CoV-2, the virus that causes Coronavirus Disease 2019 (COVID-19), has been characterized as a worldwide pandemic. Currently, there are few preclinical animal models that suitably represent infection, as the main point of entry to human cells is via human angiotensin-converting enzyme 2 (ACE2) which is not present in typical preclinical mouse strains. Additionally, SARS-CoV-2 is highly virulent and unsafe for use in many research facilities. Here we describe the development of a preclinical animal model using intranasal administration of ACE2 followed by non-infectious SARS-CoV-2 pseudovirus (PsV) challenge. METHODS: To specifically generate our SARS-CoV-2 PsV, we used a lentivirus system. Following co-transfection with a packaging plasmid containing HIV Gag and Pol, luciferase-expressing lentiviruses, and a plasmid carrying the SARS-CoV-2 spike protein, SARS-CoV-2 PsVs can be isolated and purified. To better understand and maximize the infectivity of SARS-CoV-2 PsV, we generated PsV carrying spike protein variants known to have varying human ACE2 binding properties, including 19 deletion (19del) and 19del + D614G. RESULTS: Our system demonstrated the ability of PsVs to infect the respiratory passage of mice following intranasal hACE2 transduction. Additionally, we demonstrate in vitro and in vivo manipulability of our system using recombinant receptor-binding domain protein to prevent PsV infection. CONCLUSIONS: Our PsV system is able to model SARS-CoV-2 infections in a preclinical mouse model and can be used to test interventions or preventative treatments. We believe that this method can be extended to work in various mouse strains or to model infection with different coronaviruses. A simple in vivo system such as our model is crucial for rapidly and effectively responding to the current COVID-19 pandemic in addition to preparing for future potential coronavirus outbreaks.


Subject(s)
Angiotensin-Converting Enzyme 2/administration & dosage , COVID-19 , Disease Models, Animal , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/physiology , Administration, Intranasal , Animals , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Female , Humans , Lentivirus/physiology , Mice , Mice, Inbred BALB C
13.
Cell Mol Immunol ; 18(10): 2393-2401, 2021 10.
Article in English | MEDLINE | ID: mdl-32382128

ABSTRACT

A long duration of treatment and emerging drug resistance pose significant challenges for global tuberculosis (TB) eradication efforts. Therefore, there is an urgent need to develop novel strategies to shorten TB treatment regimens and to treat drug-resistant TB. Using an albumin-fusion strategy, we created a novel albumin-fused granulocyte-macrophage colony-stimulating factor (albGM-CSF) molecule that harnesses albumin's long half-life and targeting abilities to enhance the biostability of GM-CSF and direct it to the lymph nodes, where the effects of GM-CSF can increase dendritic cell populations crucial for eliciting a potent immune response. In this study, we demonstrate that albGM-CSF serves as a novel immunotherapy for chronic Mycobacterium tuberculosis (Mtb) infections by enhancing GM-CSF biostability in serum. Specifically, albumin is very safe, stable, and has a long half-life, thereby enhancing the biostability of GM-CSF. In the lungs and draining lymph nodes, albGM-CSF is able to increase the numbers of dendritic cells, which are crucial for the activation of naive T cells and for eliciting potent immune responses. Subcutaneous administration of albGM-CSF alone reduced the mean lung bacillary burden in mice with chronic tuberculosis infection. While GM-CSF administration was associated with IL-1ß release from Mtb-infected dendritic cells and macrophages, higher IL-1ß levels were observed in albGM-CSF-treated mice with chronic tuberculosis infection than in mice receiving GM-CSF. Albumin fusion with GM-CSF represents a promising strategy for the control of chronic lung tuberculosis infections and serves as a novel therapeutic vaccination platform for other infectious diseases and malignancies.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Albumins/pharmacology , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Immunotherapy , Mice , Tuberculosis/therapy
14.
J Immunother Cancer ; 8(1)2020 02.
Article in English | MEDLINE | ID: mdl-32111730

ABSTRACT

BACKGROUND: Peritoneal carcinomatosis is a hallmark of advanced peritoneal tumor progression, particularly for tubal/ovarian high-grade serous carcinomas (HGSCs). Patients with peritoneal carcinomatosis have poor survival rates and are difficult to treat clinically due to widespread tumor dissemination in the peritoneal cavity. METHODS: We developed a clinically relevant, genetically induced, peritoneal carcinomatosis model that recapitulates the histological morphology and immunosuppressive state of the tumor microenvironment of metastatic peritoneal HGSCs by intraperitoneally injecting shp53, AKT, c-Myc, luciferase and sleeping beauty transposase, followed by electroporation (EP) in the peritoneal cavity of immunocompetent mice (intraperitoneal (IP)/EP mice). RESULTS: Similar to the spread of human ovarian cancers, IP/EP mice displayed multiple tumor nodules attached to the surface of the abdomen. Histopathological analysis indicated that these tumors were epithelial in origin. These IP/EP mice also displayed a loss of CD3+ T cell infiltration in tumors, highly expressed inhibitory checkpoint molecules in tumor-infiltrating and global CD4+ and CD8+ T cells, and increased levels of transforming growth factor-ß in the ascites, all of which contribute to the promotion of tumor growth. CONCLUSIONS: Overall, our tumor model recapitulates clinical peritoneal HGSC metastasis, which makes it ideal for preclinical drug screening, testing of immunotherapy-based therapeutics and studying of the tumor biology of peritoneal carcinomatosis.


Subject(s)
Ovarian Neoplasms/pathology , Peritoneal Neoplasms/genetics , Tumor Escape/genetics , Tumor Microenvironment/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Disease Models, Animal , Electroporation , Female , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Transgenic , Oncogenes/genetics , Ovarian Neoplasms/genetics , Peritoneal Neoplasms/secondary , Primary Cell Culture , Transposases/genetics , Tumor Microenvironment/genetics , Tumor Suppressor Protein p53/genetics
15.
Hum Pathol ; 92: 67-80, 2019 10.
Article in English | MEDLINE | ID: mdl-31437519

ABSTRACT

Using a comprehensive next-generation sequencing pipeline (143 genes), Oncomine Comprehensive v.2, we analyzed genetic alterations on a set of vulvar squamous cell carcinomas (SCCs) with emphasis on the primary and metastatic samples from the same patient, to identify amenable therapeutic targets. Clinicopathologic features were reported and genomic DNA was extracted from 42 paraffin-embedded tumor tissues of 32 cases. PD-L1 expression was evaluated in 20 tumor tissues (10 cases with paired primary and metastatic tumors). Fifteen (88%) of 17 successfully analyzed HPV-unrelated SCCs harbored TP53 mutations. 2 different TP53 mutations had been detected in the same tumor in 4 of 15 cases. Other recurrent genetic alterations in this group of tumors included CDKN2a mutations (41%), HRAS mutations (12%), NOTCH1 mutations (12%) and BIRC3 (11q22.1-22.2) amplification (12%). Six HPV-related tumors harbored PIK3CA, BAP1, PTEN, KDR, CTNNB1, and BRCA2 mutations, of which, one case also contained TP53 mutation. Six cases showed identical mutations in paired primary site and distant metastatic location and four cases displayed different mutational profiles. PD-L1 expression was seen in 6 of 10 primary tumors and all 6 paired cases showed discordant PD-L1 expression in the primary and metastatic sites. Our results further confirmed the genetic alterations that are amenable to targeted therapy, offering the potential for individualized management strategies for the treatment of these aggressive tumors with different etiology. Discordant PD-L1 expression in the primary and metastatic vulvar SCCs highlights the importance of evaluation of PD-L1 expression in different locations to avoid false negative information provided for immunotherapy.


Subject(s)
B7-H1 Antigen/genetics , Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Tumor Suppressor Protein p53/genetics , Vulvar Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/secondary , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Receptor, Notch1/genetics , Vulvar Neoplasms/pathology , Vulvar Neoplasms/secondary
16.
Clin Cancer Res ; 25(14): 4516-4529, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31010836

ABSTRACT

PURPOSE: Choriocarcinoma is most commonly gestational (androgenetic or biparental) but can be of germ cell origin or can develop as a component of a somatic neoplasm (genetically related to the patient). The latter type are aggressive neoplasms for which the underlying genetic alterations are not well characterized. EXPERIMENTAL DESIGN: To investigate the relationship between the different components of somatic neoplasms with choriocarcinomatous elements, the genetic differences between gestational and nongestational tumors, and identify potential targetable alterations, we analyzed 23 samples from 11 tumors, including five gynecologic-type somatic neoplasms with choriocarcinomatous differentiation (two to three different components each) and six pure choriocarcinomas, for somatic mutations, single-nucleotide polymorphisms, and PD-L1 expression. RESULTS: In mixed tumors, gynecologic-type carcinoma components demonstrated lineage-characteristic and lineage-specific alterations, with choriocarcinomatous components sharing some of these as well as demonstrating novel alterations, supporting a clonal relationship with divergent differentiation of the choriocarcinoma from the somatic carcinoma. TP53 mutation only occurred in nongestational tumors. Diffuse PD-L1 expression was characteristic of choriocarcinoma in both pure and mixed tumors but not seen in the gynecologic-type carcinoma components. CONCLUSIONS: Given that the somatic carcinomatous and choriocarcinomatous components of mixed tumors have distinct genetic alterations and biomarker expression, separate analysis of these components is required to guide targeted therapy. High PD-L1 expression suggests a role for checkpoint inhibitor-based immunotherapy in tumors with a choriocarcinoma component. The underlying mechanisms by which cancer stem cells reprogram and initiate trophoblastic retrodifferentiation in some somatic tumors warrant further investigation.


Subject(s)
B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , Cell Lineage , Choriocarcinoma/pathology , Genital Neoplasms, Female/pathology , Mutation , Uterine Neoplasms/pathology , Adult , Aged , Cell Differentiation , Choriocarcinoma/genetics , Choriocarcinoma/metabolism , Female , Genital Neoplasms, Female/genetics , Genital Neoplasms, Female/metabolism , Humans , Middle Aged , Molecular Targeted Therapy , Neoplasm Grading , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism
17.
Proc Natl Acad Sci U S A ; 115(17): E4032-E4040, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29632186

ABSTRACT

A technology to prime desired populations of T cells in the body-particularly those that possess low avidity against target antigen-would pave the way for the design of new types of vaccination for intractable infectious diseases or cancer. Here, we report such a technology based on positive feedback-driven, programmed self-assembly of peptide-major histocompatibility complex (pMHC) directly on the membrane of cognate T cells. Our design capitalizes on the unique features of the protein annexin V (ANXA5), which-in a concerted and synergistic manner-couples the early onset of TCR signaling by cognate pMHC with a surge in pMHC-TCR affinity, with repeated pMHC encounters, and with widespread TCR cross-linking. In our system, ANXA5 is linked to pMHC and firmly engages the plasma membrane of cognate T cells upon (and only upon) the early onset of TCR signaling. ANXA5, in turn, exerts a mechanical force that stabilizes interactions at the TCR-pMHC interface and facilitates repeated, serial pMHC encounters. Furthermore, ANXA5 quickly arranges into uniform 2D matrices, thereby prompting TCR cross-linking. Fusion of ANXA5 to pMHC augments lymphocyte activation by several orders of magnitude (>1,000-fold), bypasses the need for costimulation, and breaks tolerance against a model self-antigen in vivo. Our study opens the door to the application of synthetic, feedback-driven self-assembly platforms in immune modulation.


Subject(s)
Annexin A5/immunology , Histocompatibility Antigens/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Annexin A5/genetics , Female , Histocompatibility Antigens/genetics , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics
18.
Oncotarget ; 7(42): 68489-68502, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27655678

ABSTRACT

Myeloid-derived-suppressor cells (MDSCs) are key mediators of immune suppression in the ovarian tumor microenvironment. Modulation of MDSC function to relieve immunosuppression may enhance the immunologic clearance of tumors. The bis-benzylidine piperidone RA190 binds to the ubiquitin receptor RPN13/ADRM1 on the 19S regulatory particle of the proteasome and directly kills ovarian cancer cells by triggering proteotoxic stress. Here we examine the effect of RA190 treatment on the immunosuppression induced by MDSCs in the tumor microenvironment, specifically on the immunosuppression induced by MDSCs. We show that RA190 reduces the expression of Stat3 and the levels of key immunosuppressive enzymes and cytokines arginase, iNOS, and IL-10 in MDSCs, while boosting expression of the immunostimulatory cytokine IL-12. Furthermore, we show that the RA190-treated MDSCs lost their capacity to suppress CD8+ T cell function. Finally, we show that RA190 treatment of mice bearing syngeneic ovarian tumor elicits potent CD8+ T cell antitumor immune responses and improves tumor control and survival. These data suggest the potential of RA190 for ovarian cancer treatment by both direct killing of tumor cells via proteasome inhibition and relief of MDSC-mediated suppression of CD8 T cell-dependent antitumor immunity elicited by the apoptotic tumor cells.


Subject(s)
Benzylidene Compounds/pharmacology , Cell Adhesion Molecules/antagonists & inhibitors , Immune Tolerance/drug effects , Myeloid-Derived Suppressor Cells/drug effects , Tumor Microenvironment/drug effects , Animals , Benzylidene Compounds/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Adhesion Molecules/immunology , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Female , HEK293 Cells , Humans , Immune Tolerance/immunology , Intracellular Signaling Peptides and Proteins , Kaplan-Meier Estimate , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/metabolism , RNA Interference , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/immunology
19.
Cell Biosci ; 6: 17, 2016.
Article in English | MEDLINE | ID: mdl-26949512

ABSTRACT

BACKGROUND: Human Papillomavirus is responsible for over 99 % of cervical cancers and is associated with cancers of the head and neck. The currently available prophylactic vaccines against HPV do not generate therapeutic effects against established HPV infections and associated lesions and disease. Thus, the need for a therapeutic vaccine capable of treating HPV-induced malignancies persists. Synthetic long peptides vaccination is a popular antigen delivery method because of its safety, stability, production feasibility, and its need to be processed by professional antigen presenting cells before it can be presented to cytotoxic CD8+ T lymphocytes. Cancers in the buccal mucosa have been shown to elicit cancer-related inflammations that are capable of recruiting inflammatory and immune cells to generate antitumor effects. In the current study, we evaluated the therapeutic potential of synthetic HPV long peptide vaccination in the absence of adjuvant in the TC-1 buccal tumor model. RESULT: We show that intratumoral vaccination with E7 long peptide alone effectively controls buccal TC-1 tumors in mice. Furthermore, we observed an increase in systemic as well as local E7-specific CD8+ T cells in buccal tumor-bearing mice following the vaccination. Finally, we show that induction of immune responses against buccal tumors by intratumoral E7 long peptide vaccination is independent of CD4+ T cells, and that the phenomenon may be related to the unique environment associated with mucosal tissues. CONCLUSION: Our results suggest the possibility for clinical translation of the administration of adjuvant free therapeutic long peptide vaccine as a potentially effective and safe strategy for mucosal HPV-associated tumor treatment.

20.
Clin Cancer Res ; 20(21): 5456-67, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24893628

ABSTRACT

PURPOSE: Imiquimod is a Toll-like receptor 7 agonist used topically to treat external genital warts and basal cell carcinoma. We examined the combination of topical imiquimod with intramuscular administration of CRT/E7, a therapeutic human papillomavirus (HPV) vaccine comprised of a naked DNA vector expressing calreticulin fused to HPV16 E7. EXPERIMENTAL DESIGN: Using an orthotopic HPV16 E6/E7(+) syngeneic tumor, TC-1, as a model of high-grade cervical/vaginal/vulvar intraepithelial neoplasia, we assessed if combining CRT/E7 vaccination with cervicovaginal deposition of imiquimod could result in synergistic activities promoting immune-mediated tumor clearance. RESULTS: Imiquimod induced cervicovaginal accumulation of activated E7-specific CD8(+) T cells elicited by CRT/E7 vaccination. Recruitment was not dependent upon the specificity of the activated CD8(+) T cells, but was significantly reduced in mice lacking the IFNγ receptor. Intravaginal imiquimod deposition induced upregulation of CXCL9 and CXCL10 mRNA expression in the genital tract, which are produced in response to IFNγ receptor signaling and attract cells expressing their ligand, CXCR3. The T cells attracted by imiquimod to the cervicovaginal tract expressed CXCR3 as well as CD49a, an integrin involved in homing and retention of CD8(+) T cells at mucosal sites. Our results indicate that intramuscular CRT/E7 vaccination in conjunction with intravaginal imiquimod deposition recruits antigen-specific CXCR3(+) CD8(+) T cells to the genital tract. CONCLUSIONS: Several therapeutic HPV vaccination clinical trials using a spectrum of DNA vaccines, including vaccination in concert with cervical imiquimod, are ongoing. Our study identifies a mechanism by which these strategies could provide therapeutic benefit. Our findings support accumulating evidence that manipulation of the tumor microenvironment can enhance the therapeutic efficacy of strategies that induce tumor-specific T cells.


Subject(s)
Aminoquinolines/pharmacology , Antigens/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Genitalia/drug effects , Interferon-gamma/immunology , Toll-Like Receptors/agonists , Animals , Female , Genitalia/virology , Imiquimod , Integrin alpha1/immunology , Mice , Mice, Inbred C57BL , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/virology , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Vaccines/immunology , Receptors, Interferon/immunology , Repressor Proteins/immunology , Vaccination/methods , Vaccines, DNA/immunology , Interferon gamma Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...