Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cancer Cell Int ; 23(1): 207, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726816

ABSTRACT

BACKGROUND: Lung cancer has the highest mortality rate in the world, and mounting evidence suggests that cancer stem cells (CSCs) are associated with poor prognosis, recurrence, and metastasis of lung cancer. It is urgent to identify new biomarkers and therapeutic targets for targeting lung CSCs. METHODS: We computed the single-sample gene set enrichment analysis (ssGSEA) of 1554 Reactome gene sets to identify the mRNA expression-based stemness index (mRNAsi)-associated pathways using the genome-wide RNA sequencing data of 509 patients from The Cancer Genome Atlas (TCGA) cohort of lung adenocarcinoma (LUAD). Phenotypic effects of ubiquitin-specific peptidase 5 (USP5) on the CSC-like properties and metastasis were examined by in vitro sphere formation assay, migration assay, invasion assay, and in vivo xenografted animal models. Cycloheximide chase assay, co-immunoprecipitation assay, and deubiquitination assay were performed to confirm the effect of USP5 on the deubiquitination of ß-catenin. RESULTS: We demonstrated that USP5 expression were positively correlated with the stemness-associated signatures and poor outcomes in lung cancer specimens. Silencing of endogenous USP5 reduced CSC-like characteristics, epithelial-mesenchymal transition (EMT), and metastasis in vitro and in vivo. Furthermore, USP5 interacted with ß-catenin, which resulted in deubiquitination, stabilization of ß-catenin, and activation of Wnt/ß-catenin pathway. Accordingly, expression of USP5 was positively correlated with the enrichment score of the Wnt/TCF pathway signature in human lung cancer. Silencing of ß-catenin expression suppressed USP5-enhancing sphere formation. Targeting USP5 with the small molecule WP1130 promoted the degradation of ß-catenin, and showed great inhibitory effects on sphere formation, migration, and invasion. Finally, we identified a poor-prognosis subset of tumors characterized by high levels of USP5, Wnt signaling score, and Stemness score in both TCGA-LUAD and Rousseaux_2013 datasets. CONCLUSIONS: These findings reveal a clinical evidence for USP5-enhanced Wnt/ß-catenin signaling in promoting lung cancer stemness and metastasis, implying that targeting USP5 could provide beneficial effects to improve lung cancer therapeutics.

2.
Oncogene ; 41(21): 3011-3023, 2022 05.
Article in English | MEDLINE | ID: mdl-35459781

ABSTRACT

Most cases of hepatocellular carcinoma (HCC) arise with the fibrotic microenvironment where hepatic stellate cells (HSCs) and carcinoma-associated fibroblasts (CAFs) are critical components in HCC progression. Therefore, CAF normalization could be a feasible therapy for HCC. Galectin-1 (Gal-1), a ß-galactoside-binding lectin, is critical for HSC activation and liver fibrosis. However, few studies has evaluated the pathological role of Gal-1 in HCC stroma and its role in hepatic CAF is unclear. Here we showed that Gal-1 mainly expressed in HCC stroma, but not cancer cells. High expression of Gal-1 is correlated with CAF markers and poor prognoses of HCC patients. In co-culture systems, targeting Gal-1 in CAFs or HSCs, using small hairpin (sh)RNAs or an therapeutic inhibitor (LLS30), downregulated plasminogen activator inhibitor-2 (PAI-2) production which suppressed cancer stem-like cell properties and invasion ability of HCC in a paracrine manner. The Gal-1-targeting effect was mediated by increased a disintegrin and metalloprotease 17 (ADAM17)-dependent TNF-receptor 1 (TNFR1) shedding/cleavage which inhibited the TNF-α → JNK → c-Jun/ATF2 signaling axis of pro-inflammatory gene transcription. Silencing Gal-1 in CAFs inhibited CAF-augmented HCC progression and reprogrammed the CAF-mediated inflammatory responses in a co-injection xenograft model. Taken together, the findings uncover a crucial role of Gal-1 in CAFs that orchestrates an inflammatory CSC niche supporting HCC progression and demonstrate that targeting Gal-1 could be a potential therapy for fibrosis-related HCC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Hepatocellular , Liver Neoplasms , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Fibroblasts/metabolism , Galectin 1/genetics , Galectin 1/metabolism , Humans , Liver Neoplasms/pathology , Protein Stability , Receptors, Tumor Necrosis Factor, Type I/metabolism , Tumor Microenvironment
3.
Membranes (Basel) ; 11(2)2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33535664

ABSTRACT

The raised source/drain (RSD) structure is one of thin film transistor designs that is often used to improve device characteristics. Many studies have mentioned that the high impact ionization rate occurring at a drain side can be reduced, owing to a raised source/drain area that can disperse the drain electric field. In this study, we will discuss how the electric field at the drain side of an RSD device is reduced by a vertical lightly doped drain (LDD) scheme rather than a RSD structure. We used different raised source/drain forms to simulate the drain side electric field for each device, as well as their output characteristics, using Integrated Systems Engineering (ISE-TCAD) simulators. Different source and drain thicknesses and doping profiles were applied to verify the RSD mechanism. We found that the electric fields of a traditional device and uniform doping RSD structures are almost the same (~2.9 × 105 V/cm). The maximum drain electric field could be reduced to ~2 × 105 V/cm if a vertical lightly doped drain RSD scheme was adopted. A pure raised source/drain structure did not benefit the device characteristics if a vertical lightly doped drain design was not included in the raised source/drain areas.

4.
Theranostics ; 10(19): 8903-8923, 2020.
Article in English | MEDLINE | ID: mdl-32754286

ABSTRACT

The loss of cancer-cell junctions and escape from the primary-tumor microenvironment are hallmarks of metastasis. A tight-junction protein, Claudin 1 (CLDN1), is a metastasis suppressor in lung adenocarcinoma. However, as a metastasis suppressor, the underlying molecular mechanisms of CLDN1 has not been well studied. Methods: The signaling pathway regulated by CLDN1 was analyzed by Metacore software and validated by immunoblots. The effect of the CLDN1-EPHB6-ERK-SLUG axis on the formation of cancer stem-like cells, drug resistance and metastasis were evaluated by sphere assay, aldefluor assay, flow cytometry, migration assay, cytotoxicity, soft agar assay, immunoprecipitation assay and xenograft experiments. Furthermore, the methylation-specific PCR, pyrosequencing assay, chromatin immunoprecipitation and reporter assay were used to study the epigenetic and RUNX3-mediated CLDN1 transcription. Finally, the molecular signatures of RUNX3/CLDN1/SLUG were used to evaluate the correlation with overall survival by using gene expression omnibus (GEO) data. Results: We demonstrated that CLDN1 repressed cancer progression via a feedback loop of the CLDN1-EPHB6-ERK1/2-SLUG axis, which repressed metastasis, drug resistance, and cancer stemness, indicating that CLDN1 acts as a metastasis suppressor. CLDN1 upregulated the cellular level of EPHB6 and enhanced its activation, resulting in suppression of ERK1/2 signaling. Interestingly, DNA hypermethylation of the CLDN1 promoter abrogated SLUG-mediated suppression of CLDN1 in low-metastatic cancer cells. In contrast, the histone deacetylase inhibitor trichostatin A or vorinostat facilitated CLDN1 expression in high-metastatic cancer cells and thus increased the efficacy of chemotherapy. Combined treatment with cisplatin and trichostatin A or vorinostat had a synergistic effect on cancer-cell death. Conclusions: This study revealed that DNA methylation maintains CLDN1 expression and then represses lung cancer progression via the CLDN1-EPHB6-ERK1/2-SLUG axis. Because CLDN1 enhances the efficacy of chemotherapy, CLDN1 is not only a prognostic marker but a predictive marker for lung adenocarcinoma patients who are good candidates for chemotherapy. Forced CLDN1 expression in low CLDN1-expressing lung adenocarcinoma will increase the chemotherapy response, providing a novel therapeutic strategy.


Subject(s)
Adenocarcinoma of Lung/genetics , Cisplatin/pharmacology , Claudin-1/genetics , DNA Methylation , Drug Resistance, Neoplasm , Lung Neoplasms/genetics , Receptors, Eph Family/metabolism , Snail Family Transcription Factors/metabolism , A549 Cells , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/metabolism , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxamic Acids/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice , Sequence Analysis, DNA , Tumor Microenvironment , Vorinostat/pharmacology , Xenograft Model Antitumor Assays
5.
Oncogene ; 39(4): 862-876, 2020 01.
Article in English | MEDLINE | ID: mdl-31570789

ABSTRACT

Treatment of ovarian cancer (OvCa) remains challenging owing to its high recurrence rates. Detachment of cancer cells into the peritoneal fluid plays a key role in OvCa relapse, but how this occurs remains incompletely understood. Here we examined global miRNA expression profiles of paired primary/recurrent OvCa specimens and identified a novel biomarker, microRNA-150-5p (miR-150-5p), that was significantly upregulated in 16 recurrent OvCa tissues compared with their matched primary specimens. Analyses of cohorts from two other groups confirmed that expression of miR-150-5p was associated with early relapse and poor survival of OvCa patients. Inhibition of miR-150-5p significantly inhibited the migration and invasion of OvCa cells and induced a mesenchymal-epithelial transition (MET) phenotype. We demonstrated that the proto-oncogene, MYB, is an miR-150-5p target in OvCa cells and that the miR-150-5p/c-Myb/Slug axis plays important roles in regulating epithelial-mesenchymal transition (EMT) in OvCa cells. Expression of MYB was significantly correlated with good clinical outcome in OvCa and was negatively correlated with Slug expression in late-stage clinical specimens. These results suggest that miR-150-5p upregulation mediates the progression of recurrent OvCa by targeting the c-Myb/Slug pathway. Inhibition of miR-150-5p may serve as a new therapeutic strategy for preventing recurrence of OvCa.


Subject(s)
Biomarkers, Tumor/genetics , Cell Movement , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/pathology , Proto-Oncogene Proteins c-myb/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation , Databases, Genetic , Epithelial-Mesenchymal Transition , Female , Humans , MicroRNAs/metabolism , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Prognosis , Proto-Oncogene Mas , Proto-Oncogene Proteins c-myb/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Survival Rate , Up-Regulation
6.
Mol Ther Nucleic Acids ; 18: 991-998, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31778957

ABSTRACT

Galectin-1 (Gal-1) is a pleiotropic homodimeric ß-galactoside-binding protein with a single carbohydrate recognition domain. It has been implicated in several biological processes that are important during tumor progression. Several lines of evidence have indicated that Gal-1 is involved in cancer immune escape and induces T cell apoptosis. These observations all emphasized Gal-1 as a novel target for cancer immunotherapy. Here, we developed a novel Gal-1-targeting DNA aptamer (AP-74 M-545) and demonstrated its antitumor effect by restoring immune function. AP-74 M-545 binds to Gal-1 with high affinity. AP-74 M-545 targets tumors in murine tumor models but suppresses tumor growth only in immunocompetent C57BL/6 mice, not in immunocompromised non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. Immunohistochemistry revealed increased CD4+ and CD8+ T cells in AP-74 M-545-treated tumor tissues. AP-74 M-545 suppresses T cell apoptosis by blocking the binding of Gal-1 to CD45, the main receptor and apoptosis mediator of Gal-1 on T cells. Collectively, our data suggest that the Gal-1 aptamer suppresses tumor growth by blocking the interaction between Gal-1 and CD45 to rescue T cells from apoptosis and restores T cell-mediated immunity. These results indicate that AP-74 M-545 may be a potential strategy for cancer immunotherapy.

7.
Oncotarget ; 7(39): 62925-62938, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-26910837

ABSTRACT

Ovarian clear cell carcinoma (OCCC) is an aggressive neoplasm with a high recurrence rate that frequently develops resistance to platinum-based chemotherapy. There are few prognostic biomarkers or targeted therapies exist for patients with OCCC. Here, we identified that FXYD2, the modulating subunit of Na+/K+-ATPases, was highly and specifically expressed in clinical OCCC tissues. The expression levels of FXYD2 were significantly higher in advanced-stage of OCCC and positively correlated with patients' prognoses. Silencing of FXYD2 expression in OCCC cells inhibited Na+/K+-ATPase enzyme activity and suppressed tumor growth via induction of autophagy-mediated cell death. We found that high FXYD2 expression in OCCC was transcriptionally regulated by the transcriptional factor HNF1B. Furthermore, up-regulation of FXYD2 expression significantly increased the sensitivity of OCCC cells to cardiac glycosides, the Na+/K+-ATPase inhibitors. Two cardiac glycosides, digoxin and digitoxin, had a great therapeutic efficacy in OCCC cells in vitro and in vivo. Taken together, our results demonstrate that FXYD2 is functionally upregulated in OCCC and may serve as a promising prognostic biomarker and therapeutic target of cardiac glycosides in OCCC.


Subject(s)
Adenocarcinoma, Clear Cell/metabolism , Cardiac Glycosides/pharmacology , Ovarian Neoplasms/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Adenocarcinoma, Clear Cell/pathology , Autophagy , Biomarkers, Tumor/metabolism , Cell Death , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Ovarian Neoplasms/pathology , Prognosis , Up-Regulation
8.
Cancer Res ; 73(1): 428-38, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23047866

ABSTRACT

α-Catulin is an oncoprotein that helps sustain proliferation by preventing cellular senescence. Here, we report that α-catulin also drives malignant invasion and metastasis. α-Catulin was upregulated in highly invasive non-small cell lung cancer (NSCLC) cell lines, where its ectopic expression or short-hairpin RNA-mediated attenuation enhanced or limited invasion or metastasis, respectively. α-Catulin interacted with integrin-linked kinase (ILK), a serine/threonine protein kinase implicated in cancer cell proliferation, antiapoptosis, invasion, and angiogenesis. Attenuation of ILK or α-catulin reciprocally blocked cell migration and invasion induced by the other protein. Mechanistic investigations revealed that α-catulin activated Akt-NF-κB signaling downstream of ILK, which in turn led to increased expression of fibronectin and integrin αvß3. Pharmacologic or antibody-mediated blockade of NF-κB or αvß3 was sufficient to inhibit α-catulin-induced cell migration and invasion. Clinically, high levels of expression of α-catulin and ILK were associated with poor overall survival in patients with NSCLC. Taken together, our study shows that α-catulin plays a critical role in cancer metastasis by activating the ILK-mediated Akt-NF-κB-αvß3 signaling axis.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Neoplasm Invasiveness/pathology , Signal Transduction/physiology , Animals , Blotting, Western , Carcinoma, Non-Small-Cell Lung/pathology , Enzyme Activation/physiology , Humans , Integrin alphaVbeta3 , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Protein Serine-Threonine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transplantation, Heterologous , Two-Hybrid System Techniques , alpha Catenin/metabolism
9.
Carcinogenesis ; 34(3): 530-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23188675

ABSTRACT

Prostate cancer (PCa) is a leading cause of mortality and morbidity in men worldwide, and emerging evidence suggests that the CD44(high) prostate tumor-initiating cells (TICs) are associated with its poor prognosis. Although microRNAs are frequently dysregulated in human cancers, the influence of microRNAs on PCa malignancy and whether targeting TIC-associated microRNAs inhibit PCa progression remain unclear. In this study, we found that miR-320 is significantly downregulated in PCa. Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. Global gene expression profiling of miR-320-overexpressing PCa cells reveals that downstream target genes of Wnt/ß-catenin pathway and cancer stem cell markers are significantly decreased. MicroRNA-320 inhibits ß-catenin expression by targeting the 3'-untranslated region of ß-catenin mRNA. The reduction of miR-320 associated with increased ß-catenin was also found in CD44(high) subpopulation of prostate cancer cells and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem-like properties, such as tumorsphere formation, chemoresistance and tumorigenic abilities, although enriching the population of stem-like TICs among PCa cells. Furthermore, increased miR-320 expression in prostate stem-like TICs significantly suppresses stem cell-like properties of PCa cells. These results support that miR-320 is a key negative regulator in prostate TICs, and suggest developing miR-320 as a novel therapeutic agent may offer benefits for PCa treatment.


Subject(s)
Down-Regulation , MicroRNAs/physiology , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/pathology , Wnt Signaling Pathway , 3' Untranslated Regions , Animals , Cell Line, Tumor , Gene Expression , Gene Expression Regulation, Neoplastic , Genes, Reporter , Humans , Luciferases, Firefly/biosynthesis , Luciferases, Firefly/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis , Prostatic Neoplasms/metabolism , Spheroids, Cellular/metabolism , beta Catenin/genetics , beta Catenin/metabolism
10.
Chin J Physiol ; 52(2): 93-8, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19764344

ABSTRACT

Several studies indicated that stress would induce analgesia. Noise, one of the stressors, was assumed to be one of the elements to enhance the threshold of pain tolerance. Since noise might affect human's daily life, it is important to know the mechanism underlying this phenomenon. The objective of this study was to explore the possible mechanism which was trying to explain how the noise affects central nervous system and the possible relationship between this effect and the involvement of opioid neurons. In the preliminary study, the analgesic effect was corroborated in ICR mice in a formalin study. The results are as follows: [1] Naloxone (a micro-opioid receptor antagonist; 1 mg/kg, i.p.), beta-FNA (a delta-opioid receptor antagonist; 5, 10 mg, i.c.v.) and naltrindole (a delta-opioid receptor antagonist; 1, 5 mg/kg, i.p.) were found to reduce antinociceptive effect. [2] nor-BNI (a kappa-antagonist; 1 microg, i.c.v.) had much effect on noise induced analgesic. In conclusion, this study suggests that noise stress enhanced the threshold of analgesia, which might be related to micro- and delta-opioid receptors in the central nervous system.


Subject(s)
Analgesia/methods , Neurons/metabolism , Noise , Pain Threshold/physiology , Stress, Physiological/physiology , Animals , Mice , Mice, Inbred ICR , Naloxone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Neurons/drug effects , Opioid Peptides/metabolism , Pain Measurement , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/antagonists & inhibitors , Receptors, Opioid, mu/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...