Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 8(1): 458, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24188092

ABSTRACT

The perfectly ordered parallel arrays of periodic Ce silicide nanowires can self-organize with atomic precision on single-domain Si(110)-16 × 2 surfaces. The growth evolution of self-ordered parallel Ce silicide nanowire arrays is investigated over a broad range of Ce coverages on single-domain Si(110)-16 × 2 surfaces by scanning tunneling microscopy (STM). Three different types of well-ordered parallel arrays, consisting of uniformly spaced and atomically identical Ce silicide nanowires, are self-organized through the heteroepitaxial growth of Ce silicides on a long-range grating-like 16 × 2 reconstruction at the deposition of various Ce coverages. Each atomically precise Ce silicide nanowire consists of a bundle of chains and rows with different atomic structures. The atomic-resolution dual-polarity STM images reveal that the interchain coupling leads to the formation of the registry-aligned chain bundles within individual Ce silicide nanowire. The nanowire width and the interchain coupling can be adjusted systematically by varying the Ce coverage on a Si(110) surface. This natural template-directed self-organization of perfectly regular parallel nanowire arrays allows for the precise control of the feature size and positions within ±0.2 nm over a large area. Thus, it is a promising route to produce parallel nanowire arrays in a straightforward, low-cost, high-throughput process.

2.
Appl Phys Lett ; 101(5): 53113, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-22933824

ABSTRACT

The massively parallel arrays of highly periodic Gd-doped Si nanowires (SiNWs) self-organized on Si(110)-16 × 2 surface were investigated by scanning tunneling microscopy and spectroscopy. These periodic Gd-doped SiNWs are atomically precise and show equal size, periodic positions, and high-integration densities. Surprisingly, the scanning tunneling spectroscopy results show that each metallic-like, Gd-doped SiNW exhibits room-temperature negative differential resistance (RT-NDR) behavior, which can be reproducible with various Gd dopings and is independent of the tips. Such massively parallel arrays of highly ordered and atomically identical Gd-doped SiNWs with one-dimensional laterally confined RT-NDR can be exploited in Si-based RT-NDR nanodevices.

SELECTION OF CITATIONS
SEARCH DETAIL
...