Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 1028, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310108

ABSTRACT

Tauopathies encompass a group of neurodegenerative disorders characterised by diverse tau amyloid fibril structures. The persistence of polymorphism across tauopathies suggests that distinct pathological conditions dictate the adopted polymorph for each disease. However, the extent to which intrinsic structural tendencies of tau amyloid cores contribute to fibril polymorphism remains uncertain. Using a combination of experimental approaches, we here identify a new amyloidogenic motif, PAM4 (Polymorphic Amyloid Motif of Repeat 4), as a significant contributor to tau polymorphism. Calculation of per-residue contributions to the stability of the fibril cores of different pathologic tau structures suggests that PAM4 plays a central role in preserving structural integrity across amyloid polymorphs. Consistent with this, cryo-EM structural analysis of fibrils formed from a synthetic PAM4 peptide shows that the sequence adopts alternative structures that closely correspond to distinct disease-associated tau strains. Furthermore, in-cell experiments revealed that PAM4 deletion hampers the cellular seeding efficiency of tau aggregates extracted from Alzheimer's disease, corticobasal degeneration, and progressive supranuclear palsy patients, underscoring PAM4's pivotal role in these tauopathies. Together, our results highlight the importance of the intrinsic structural propensity of amyloid core segments to determine the structure of tau in cells, and in propagating amyloid structures in disease.


Subject(s)
Alzheimer Disease , Supranuclear Palsy, Progressive , Tauopathies , Humans , Alzheimer Disease/genetics , Amyloid/chemistry , Amyloidogenic Proteins , Supranuclear Palsy, Progressive/pathology , tau Proteins/genetics , tau Proteins/chemistry , Tauopathies/genetics , Tauopathies/pathology
2.
Mol Neurodegener ; 18(1): 71, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777806

ABSTRACT

BACKGROUND: Most Alzheimer's Disease (AD) cases also exhibit limbic predominant age-related TDP-43 encephalopathy neuropathological changes (LATE-NC), besides amyloid-ß plaques and neurofibrillary tangles (NFTs) containing hyperphosphorylated tau (p-tau). LATE-NC is characterized by cytoplasmic aggregates positive for pathological TDP-43 and is associated with more severe clinical outcomes in AD, compared to AD cases lacking TDP-43 pathology TDP-43: AD(LATE-NC-). Accumulating evidence suggests that TDP-43 and p-tau interact and exhibit pathological synergy during AD pathogenesis. However, it is not yet fully understood how the presence of TDP-43 affects p-tau aggregation in symptomatic AD. METHODS: In this study, we investigated the impact of TDP-43 proteinopathy on p-tau pathology with different approaches: histologically, in a human post-mortem cohort (n = 98), as well as functionally using a tau biosensor cell line and TDP-43A315T transgenic mice. RESULTS: We found that AD cases with comorbid LATE-NC, AD(LATE-NC+), have increased burdens of pretangles and/or NFTs as well as increased brain levels of p-tau199, compared to AD(LATE-NC-) cases and controls. The burden of TDP-43 pathology was also correlated with the Braak NFT stages. A tau biosensor cell line treated with sarkosyl-insoluble, brain-derived homogenates from AD(LATE-NC+) cases displayed exacerbated p-tau seeding, compared to control and AD(LATE-NC-)-treated cells. Consistently, TDP-43A315T mice injected with AD(LATE-NC+)-derived extracts also exhibited a more severe hippocampal seeding, compared to the remaining experimental groups, albeit no TDP-43 aggregation was observed. CONCLUSIONS: Our findings extend the current knowledge by supporting a functional synergy between TDP-43 and p-tau. We further demonstrate that TDP-43 pathology worsens p-tau aggregation in an indirect manner and increases its seeding potential, probably by increasing p-tau levels. This may ultimately contribute to tau-driven neurotoxicity and cell death. Because most AD cases present with comorbid LATE-NC, this study has an impact on the understanding of TDP-43 and tau pathogenesis in AD and LATE, which account for the majority of dementia cases worldwide. Moreover, it highlights the need for the development of a biomarker that detects TDP-43 during life, in order to properly stratify AD and LATE patients.


Subject(s)
Alzheimer Disease , TDP-43 Proteinopathies , Humans , Animals , Mice , tau Proteins/metabolism , Alzheimer Disease/metabolism , Neurofibrillary Tangles/metabolism , TDP-43 Proteinopathies/metabolism , DNA-Binding Proteins/metabolism
3.
Biomacromolecules ; 23(9): 3779-3797, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36027608

ABSTRACT

Highly ordered, straight amyloid fibrils readily lend themselves to structure determination techniques and have therefore been extensively characterized. However, the less ordered curly fibrils remain relatively understudied, and the structural organization underlying their specific characteristics remains poorly understood. We found that the exemplary curly fibril-forming protein ovalbumin contains multiple aggregation prone regions (APRs) that form straight fibrils when isolated as peptides or when excised from the full-length protein through hydrolysis. In the context of the intact full-length protein, however, the regions separating the APRs facilitate curly fibril formation. In fact, a meta-analysis of previously reported curly fibril-forming proteins shows that their inter-APRs are significantly longer and more hydrophobic when compared to straight fibril-forming proteins, suggesting that they may cause strain in the amyloid state. Hence, inter-APRs driving curly fibril formation may not only apply to our model protein but rather constitute a more general mechanism.


Subject(s)
Amyloid , Amyloidosis , Amyloid/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Ovalbumin , Peptides/chemistry
4.
Front Cell Dev Biol ; 8: 559791, 2020.
Article in English | MEDLINE | ID: mdl-33015057

ABSTRACT

Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...