Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 116(1): 100-111, 2023 10.
Article in English | MEDLINE | ID: mdl-37344990

ABSTRACT

Exo70B1 is a protein subunit of the exocyst complex with a crucial role in a variety of cell mechanisms, including immune responses against pathogens. The calcium-dependent kinase 5 (CPK5) of Arabidopsis thaliana (hereafter Arabidopsis), phosphorylates AtExo70B1 upon functional disruption. We previously reported that, the Xanthomonas campestris pv. campestris effector XopP compromises AtExo70B1, while bypassing the host's hypersensitive response, in a way that is still unclear. Herein we designed an experimental approach, which includes biophysical, biochemical, and molecular assays and is based on structural and functional predictions, utilizing AplhaFold and DALI online servers, respectively, in order to characterize the in vivo XccXopP function. The interaction between AtExo70B1 and XccXopP was found very stable in high temperatures, while AtExo70B1 appeared to be phosphorylated at XccXopP-expressing transgenic Arabidopsis. XccXopP revealed similarities with known mammalian kinases and phosphorylated AtExo70B1 at Ser107, Ser111, Ser248, Thr309, and Thr364. Moreover, XccXopP protected AtExo70B1 from AtCPK5 phosphorylation. Together these findings show that XccXopP is an effector, which not only functions as a novel serine/threonine kinase upon its host target AtExo70B1 but also protects the latter from the innate AtCPK5 phosphorylation, in order to bypass the host's immune responses. Data are available via ProteomeXchange with the identifier PXD041405.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Xanthomonas campestris , Xanthomonas campestris/metabolism , Arabidopsis/metabolism , Phosphorylation , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Diseases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Crit Rev Microbiol ; 49(4): 528-542, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35709325

ABSTRACT

Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.


Subject(s)
Plant Diseases , Plants , Virulence , Plant Diseases/prevention & control , Host-Pathogen Interactions
3.
Mol Plant Pathol ; 23(1): 148-156, 2022 01.
Article in English | MEDLINE | ID: mdl-34628713

ABSTRACT

The wide host range of Xylella fastidiosa (Xf) indicates the existence of yet uncharacterized virulence mechanisms that help pathogens to overcome host defences. Various bioinformatics tools combined with prediction of the functions of putative virulence proteins are valuable approaches to study microbial pathogenicity. We collected a number of putative effectors from three Xf strains belonging to different subspecies: Temecula-1 (subsp. fastidiosa), CoDiRO (subsp. pauca), and Ann-1 (subsp. sandyi). We designed an in planta Agrobacterium-based expression system that drives the expressed proteins to the cell apoplast, in order to investigate their ability to activate defence in Nicotiana model plants. Multiple Xf proteins differentially elicited cell death-like phenotypes in different Nicotiana species. These proteins are members of different enzymatic groups: (a) hydrolases/hydrolase inhibitors, (b) serine proteases, and (c) metal transferases. We also classified the Xf proteins according to their sequential and structural similarities via the I-TASSER online tool. Interestingly, we identified similar proteins that were able to differentially elicit cell death in different cultivars of the same species. Our findings provide a basis for further studies on the mechanisms that underlie both defence activation in Xf resistant hosts and pathogen adaptation in susceptible hosts.


Subject(s)
Nicotiana , Xylella , Cell Death , Plant Diseases , Plants
4.
J Environ Manage ; 289: 112546, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33839608

ABSTRACT

The photosynthetic process in microalgae and the extracellular proton environment interact with each other. The photosynthetic process in microalgae induces a pH increase in the aquatic environment as a result of cellular protons uptake rather than as an effect of CO2 consumption. The photosynthetic water photolysis and the reduction/oxidation cycle of the plastoquinone pool provide lumen with protons. Weak bases act as "permeant buffers" in lumen during the photosynthetic procedure, converting the ΔpH to Δψ. This is possibly the main reason for continuous light-driven proton uptake from the aquatic environment through cytosol and stroma, into the lumen. The proton uptake rate and, therefore, the microalgal growth is proportional to the light intensity, cell concentration, and extracellular proton concentration. The low pH in microalgae cultures, without limitation factors related to light and nutrients, strongly induces photosynthesis (and proton uptake) and, consequently, growth. In contrast, the mitochondrial respiratory process, in the absence of photosynthetic activity, does not substantially alter the culture pH. Only after intensification of the respiratory process, using exogenous glucose supply leads to significantly reduced pH values in the culture medium, almost exclusively through proton output. Enhanced dissolution of atmospheric CO2 in water causes the phenomenon of ocean acidification, which prevents the process of calcification, a significant process for numerous phytoplankton and zooplankton organisms, as well for corals. The proposed interaction between microalgal photosynthetic activity and proton concentration in the aquatic environment, independently from the CO2 concentration, paves the way for new innovative management strategies for reversing the ocean acidification.


Subject(s)
Microalgae , Carbon Dioxide , Hydrogen-Ion Concentration , Photosynthesis , Protons , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...