Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Rep ; 7(1): 5224, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28701692

ABSTRACT

The observation and manipulation of electron dynamics in matter call for attosecond light pulses, routinely available from high-order harmonic generation driven by few-femtosecond lasers. However, the energy limitation of these lasers supports only weak sources and correspondingly linear attosecond studies. Here we report on an optical parametric synthesizer designed for nonlinear attosecond optics and relativistic laser-plasma physics. This synthesizer uniquely combines ultra-relativistic focused intensities of about 1020 W/cm2 with a pulse duration of sub-two carrier-wave cycles. The coherent combination of two sequentially amplified and complementary spectral ranges yields sub-5-fs pulses with multi-TW peak power. The application of this source allows the generation of a broad spectral continuum at 100-eV photon energy in gases as well as high-order harmonics in relativistic plasmas. Unprecedented spatio-temporal confinement of light now permits the investigation of electric-field-driven electron phenomena in the relativistic regime and ultimately the rise of next-generation intense isolated attosecond sources.

2.
Sci Rep ; 6: 21556, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26868370

ABSTRACT

We demonstrate a tool for quantitative measurements in the extreme ultraviolet (EUV) spectral region measuring spatially resolved atomic ionization products at the focus of an EUV beam. The ionizing radiation is a comb of the 11(th)-15(th) harmonics of a Ti:Sapphire femtosecond laser beam produced in a Xenon gas jet. The spatial ion distribution at the focus of the harmonics is recorded using an ion microscope. Spatially resolved single- and two-photon ionization products of Argon and Helium are observed. From such ion distributions single- and two-photon generalized cross sections can be extracted by a self-calibrating method. The observation of spatially resolved two-EUV-photon ionization constitutes an initial step towards future single-shot temporal characterization of attosecond pulses.

3.
Phys Rev Lett ; 110(16): 165002, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23679609

ABSTRACT

Beam divergences of high-order extreme ultraviolet harmonics from intense laser interactions with steep plasma density gradients are studied through experiment and Fourier analysis of the harmonic spatial phase. We show that while emission due to the relativistically oscillating mirror mechanism can be explained by ponderomotive surface denting, in agreement with previous results, the divergence of the emission due to the coherent wake emission mechanism requires a combination of the dent phase and an intrinsic emission phase. The temporal dependence of the divergences for both mechanisms is highlighted while it is also shown that the coherent wake emission divergence can be small in circumstances where the phase terms compensate each other.

4.
Phys Rev Lett ; 108(23): 235003, 2012 Jun 08.
Article in English | MEDLINE | ID: mdl-23003964

ABSTRACT

The conditions required for the production of isolated attosecond pulses from relativistically oscillating mirrors (ROM) are investigated numerically and experimentally. In simulations, carrier-envelope-phase-stabilized three-cycle pulses are found to be sufficient to produce isolated attosecond pulses, while two-cycle pulses will predominantly lead to isolated attosecond pulses even in the absence of carrier-envelope stabilization. Using a state-of-the-art laser system delivering three-cycle pulses at multiple-terawatt level, we have generated higher harmonics up to 70 eV photon energy via the ROM mechanism. The observed spectra are in agreement with theoretical expectations and highlight the potential of few-cycle-driven ROM harmonics for intense isolated attosecond pulse generation for performing extreme ultraviolet-pump extreme ultraviolet-probe experiments.

5.
Phys Rev Lett ; 105(4): 043902, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867844

ABSTRACT

We present time-resolved studies and Fourier transform spectroscopy of inner-shell excited states undergoing Auger decay and doubly excited autoionizing states, utilizing coherent extreme-ultraviolet (XUV) radiation continua. Series of states spanning a range of ∼4 eV are excited simultaneously. An XUV probe pulse tracks the oscillatory and decaying evolution of the formed wave packet. The Fourier transform of the measured trace reproduces the spectrum of the series. The present work paves the way for ultrabroadband XUV spectroscopy and studies of ultrafast dynamics in all states of matter.

6.
Phys Rev Lett ; 102(22): 225002, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19658870

ABSTRACT

Coherent wake emission is a unique source of extreme ultraviolet radiation and has been recently shown to provide the basis for intense attosecond light. Here we present a novel scheme, supported by particle-in-cell simulations, demonstrating that enhancement and spectral control of the coherent wake emission signal can be achieved by modifying the interaction plasma density ramp. Significant tunable enhancement of harmonic emission is verified experimentally, with factors of >50 in relative signal increase achieved in a narrow band of harmonics at the cutoff frequency.

7.
J BUON ; 12(4): 463-70, 2007.
Article in English | MEDLINE | ID: mdl-18067203

ABSTRACT

The increasing incidence of cancer is due to many factors. Among them quite significant is considered the rising proportion of older people in the population and the modern methods of early diagnosis. Radiotherapy (RT), along with surgery and chemotherapy, is a major therapeutic modality in the management of cancer. In the context of current treatment methods and practice, approximately half of the patients with cancer will receive RT at some stage of their illness. RT can lead to cure some kinds of cancer but it can also be delivered for palliation. Unfortunately, skin damage is a complication affecting by and large all patients receiving external beam RT. In order to minimize the risk of this damage it would be helpful to know the complex underlying molecular mechanisms and evaluate the related clinical symptoms, not only for medical but also for psychological reasons related to the patient. The purpose of this article was to review the current approaches to this particular clinical condition, in order to realize an effective patient-oriented clinical practice and keep this radiation-induced complication as low as possible.


Subject(s)
Radiodermatitis/diagnosis , Radiodermatitis/prevention & control , Radiotherapy/adverse effects , Female , Humans , Male , Radiodermatitis/therapy
8.
Phys Rev Lett ; 96(16): 163901, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16712230

ABSTRACT

The temporal intensity distribution of the third harmonic of a Ti:sapphire laser generated in Xe gas is fully reconstructed from its spectral phase and amplitude distributions. The spectral phases are retrieved by cross correlating the fundamental laser frequency field with that of the third harmonic, in a three laser versus one harmonic photon coupling scheme. The third harmonic spectral amplitude distribution is extracted from its field autocorrelation. The measured pulse duration is found to be in agreement with that expected from lowest order perturbation theory both for unstretched and chirped pulses.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(3 Pt 2): 036413, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16241585

ABSTRACT

The emission of fundamental and harmonic radiation from the rear side of thin foils in the thickness range 50-460 nm irradiated by intense frequency doubled Ti:sapphire laser pulses of the duration of 150 fs and intensities up to a few 10(18) W/cm(2) was investigated. Following up a previous study of the rear side harmonic emission [Teubner, Phys. Rev. Lett. 92, 185001 (2004)], we measured the emission efficiencies, polarization properties, and the spectral shapes of the fundamental frequency and the second harmonic. Rear side emission is only observed when the obliquely incident laser light is p -polarized. Particle-in-cell (PIC) simulations indicate that the foils remain strongly overdense during the interaction with the laser pulse and that the rear side emission is caused by energetic electron bunches which are generated at the front side by resonance absorption. They are accelerated into the foil and drive strong plasma oscillations at the fundamental and higher harmonic frequencies.

10.
Phys Rev Lett ; 94(11): 113905, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15903860

ABSTRACT

Temporal widths of an attosecond (asec) XUV radiation pulse train, formed by the superposition of higher order harmonics, have been recently determined utilizing a 2nd order autocorrelation measurement. An assessment of the validity of the approach, for the broadband XUV radiation of asec pulses, is implemented through ab initio calculations modeling the spectral and temporal response of the two-XUV-photon He ionization detector employed. The measured width of the asec bursts is discussed in terms of the spectral phases of the individual harmonics, as well as in terms of the spatially modulated temporal width of the radiation, and is found in reasonable agreement with the expected duration.

11.
Phys Rev Lett ; 93(4): 045003, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15323768

ABSTRACT

We investigate the influence of the laser prepulse due to amplified spontaneous emission on the acceleration of protons in thin-foil experiments. We show that changing the prepulse duration has a profound effect on the maximum proton energy. We find an optimal value for the target thickness, which strongly depends on the prepulse duration. At this optimal thickness, the rear side acceleration process leads to the highest proton energies, while this mechanism is rendered ineffective for thinner targets due to a prepulse-induced plasma formation at the rear side. In this case, the protons are primarily accelerated by the front side mechanism leading to lower cutoff energies.

12.
Phys Rev Lett ; 92(18): 185001, 2004 May 07.
Article in English | MEDLINE | ID: mdl-15169492

ABSTRACT

The harmonic emission from thin solid carbon and aluminum foils, irradiated by 150 fs long frequency-doubled Ti:sapphire laser pulses at lambda=395 nm and peak intensities of a few 10(18) W/cm(2), has been studied. In addition to the harmonics emitted from the front side in the specular direction, we observe harmonics up to the 10th order, including the fundamental from the rear side in the direction of the incident beam, while the foil is still strongly overdense. The experimental observations are well reproduced by particle-in-cell simulations. They reveal that strong coupling between the laser-irradiated side and the rear side occurs via the nonlocal electron current driven by the laser light.

13.
J Cell Mol Med ; 8(1): 109-16, 2004.
Article in English | MEDLINE | ID: mdl-15090266

ABSTRACT

Fibrosis following breast radiotherapy for mammary cancer is a frequent undesired effect with objective (esthetic) and subjective (pain) consequences. Forty-four patients with clinical radiofibrosis following conservative treatment of breast cancer were evaluated for the local antifibrosis effect of copper zinc superoxide dismutase [SOD(Cu/Zn)]. Extracted SOD(Cu/Zn) in a concentration of 3,600 units/mg was applied as ointment to the fibrotic affected area, b.i.d. for 90 days, in a total dose of 40 mg. The radiofibrosis intensity was scored on the basis of clinical criteria (pain and the fibrosis area) before and after SOD(Cu/Zn) treatment. SOD(Cu/Zn) was found to be effective in reducing radiation induced fibrosis by a lowering pain score in 36/39 patients and a decrease of the fibrotic area size in half cases, after 6 months. The intensity and changes of breast fibrosis were assessed also by mammography and, for the topographical distribution of subcutaneous temperature, by infrared thermography. Mammography density suggested decreased fibrosis in one third of patients. Thermography showed that fibrosis was accompanied by two zones clinically indistinctive: a central area with maximum thermal activity, called "Maximal Thermic zone" (MTZ) and a peripheral area with less thermal activity but higher than in the surrounding normal tissue, "Transitional Thermic Zone" (TTZ). Both MTZ and TTZ were significantly decreased in 36/44 patients after SOD(Cu/Zn) treatment. Clinical changes persisted all along the study. Treatment was well tolerated except for one case of local allergic reaction, and no important side effects. Molecular mechanisms involved are discussed. Further studies are running to confirm and explain these results.


Subject(s)
Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Superoxide Dismutase/pharmacology , Aged , Female , Fibrosis , Free Radical Scavengers/pharmacology , Free Radicals , Humans , Inflammation , Mammography , Middle Aged , Superoxide Dismutase/metabolism , Temperature , Thermography , Time Factors
14.
Nature ; 426(6964): 267-71, 2003 Nov 20.
Article in English | MEDLINE | ID: mdl-14628046

ABSTRACT

Temporal probing of a number of fundamental dynamical processes requires intense pulses at femtosecond or even attosecond (1 as = 10(-18) s) timescales. A frequency 'comb' of extreme-ultraviolet odd harmonics can easily be generated in the interaction of subpicosecond laser pulses with rare gases: if the spectral components within this comb possess an appropriate phase relationship to one another, their Fourier synthesis results in an attosecond pulse train. Laser pulses spanning many optical cycles have been used for the production of such light bunching, but in the limit of few-cycle pulses the same process produces isolated attosecond bursts. If these bursts are intense enough to induce a nonlinear process in a target system, they can be used for subfemtosecond pump-probe studies of ultrafast processes. To date, all methods for the quantitative investigation of attosecond light localization and ultrafast dynamics rely on modelling of the cross-correlation process between the extreme-ultraviolet pulses and the fundamental laser field used in their generation. Here we report the direct determination of the temporal characteristics of pulses in the subfemtosecond regime, by measuring the second-order autocorrelation trace of a train of attosecond pulses. The method exhibits distinct capabilities for the characterization and utilization of attosecond pulses for a host of applications in attoscience.

15.
Phys Rev Lett ; 90(13): 133902, 2003 Apr 04.
Article in English | MEDLINE | ID: mdl-12689290

ABSTRACT

We present experimental results and theoretical analysis of two-photon ionization of He by a superposition of the 7th to the 13th harmonic of a Ti:sapphire laser. Solving the time-dependent Schrödinger equation for He in a coherent polychromatic field, the He+ yield is calculated. From this yield the number of He+ ions produced has been estimated and found in reasonable agreement with its measured value. The present results establish the feasibility of a second-order autocorrelation measurement of superposition of harmonics, and thus they represent the precursor towards the direct temporal characterization of attosecond pulse trains.

16.
Opt Lett ; 27(17): 1561-3, 2002 Sep 01.
Article in English | MEDLINE | ID: mdl-18026506

ABSTRACT

By use of a transmission-grating-based Michelson interferometer, second-order interferometric as well as intensity autocorrelation traces of the third harmonic of a Ti:sapphire 50-fs laser beam produced in Ar have been measured. The duration of the harmonic is found to be that expected from lowest-order perturbation theory. At this wavelength, the performance of the interferometer with respect to pulse-front distortion and dispersion is found to be satisfactory. This result is a first step toward the use of the interferometer for the temporal characterization of higher harmonics or harmonic superposition forming attosecond pulse trains.

17.
J Xray Sci Technol ; 2(4): 259-73, 1990 Jan 01.
Article in English | MEDLINE | ID: mdl-21307429

ABSTRACT

Gold pinhole transmission gratings fabricated by Heidenhain GmbH primarily for the purpose of studying the radiation of intense soft x-ray sources have been tested with the synchrotron radiation of BESSY. Typical results for the spectral dependence of the grating efficiency into the various diffraction orders are presented in a wavelength region ranging from 4 to 20 nm. Also the influence of grating irregularities has been studied. With appropriate grating parameters quite good agreement between the experimental results and theoretical Calculations is Obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...