Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Nat Commun ; 13(1): 736, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136039

ABSTRACT

Hong Kong employed a strategy of intermittent public health and social measures alongside increasingly stringent travel regulations to eliminate domestic SARS-CoV-2 transmission. By analyzing 1899 genome sequences (>18% of confirmed cases) from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases. Community outbreaks were caused by novel introductions rather than a resurgence of circulating strains. Thus, local outbreak prevention requires strong border control and community surveillance, especially during periods of less stringent social restriction. Non-adherence to prolonged preventative measures may explain sustained local transmission observed during wave four in late 2020 and early 2021. We also found that, due to a tight transmission bottleneck, transmission of low-frequency single nucleotide variants between hosts is rare.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , COVID-19/transmission , COVID-19/virology , Genomics , Hong Kong/epidemiology , Humans , Public Health , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Travel
2.
J Virol Methods ; 300: 114396, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34856306

ABSTRACT

BACKGROUND: Combined nasal-and-throat swabs (CNTS) is less invasive and easy to execute. CNTS also induces lower risk to healthcare workers upon collection. However, there is a lack of data on viral load assessment for population-wide testing. OBJECTIVE: This study assessed if CNTS is suitable as an alternative specimen type for the detection of SARS-CoV-2. METHODS: We assessed the viral load of SARS-CoV-2 in CNTS collected from COVID-19 individuals through the 2-week period of the Universal Community Testing Programme (UCTP) conducted in Hong Kong. In addition, we compared viral loads of SARS-CoV-2 for the paired CNTS and non-CNTS specimens among these individuals. RESULTS: This UCTP identified 48 COVID-19 individuals from nearly 2 million specimens collected. The viral loads of SARS-CoV-2 varied widely, cycle threshold values Ct 16.28-36.94, among symptoms and asymptomatic individuals. The viral loads for the paired CNTS and non-CNTS specimens were comparable. CONCLUSIONS: This study demonstrated that CNTS could be a specimen of choice for diagnosis of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Hong Kong , Humans , Nasopharynx , Pharynx , Specimen Handling , Viral Load
4.
J Travel Med ; 28(8)2021 12 29.
Article in English | MEDLINE | ID: mdl-34542623

ABSTRACT

BACKGROUND: A large cluster of 59 cases were linked to a single flight with 146 passengers from New Delhi to Hong Kong in April 2021. This outbreak coincided with early reports of exponential pandemic growth in New Delhi, which reached a peak of > 400 000 newly confirmed cases on 7 May 2021. METHODS: Epidemiological information including date of symptom onset, date of positive-sample detection and travel and contact history for individual cases from this flight were collected. Whole genome sequencing was performed, and sequences were classified based on the dynamic Pango nomenclature system. Maximum-likelihood phylogenetic analysis compared sequences from this flight alongside other cases imported from India to Hong Kong on 26 flights between June 2020 and April 2021, as well as sequences from India or associated with India-related travel from February to April 2021 and 1217 reference sequences. RESULTS: Sequence analysis identified six lineages of SARS-CoV-2 belonging to two variants of concern (Alpha and Delta) and one variant of public health interest (Kappa) involved in this outbreak. Phylogenetic analysis confirmed at least three independent sub-lineages of Alpha with limited onward transmission, a superspreading event comprising 37 cases of Kappa and transmission of Delta to only one passenger. Additional analysis of another 26 flights from India to Hong Kong confirmed widespread circulation of all three variants in India since early March 2021. CONCLUSIONS: The broad spectrum of disease severity and long incubation period of SARS-CoV-2 pose a challenge for surveillance and control. As illustrated by this particular outbreak, opportunistic infections of SARS-CoV-2 can occur irrespective of variant lineage, and requiring a nucleic acid test within 72 hours of departure may be insufficient to prevent importation or in-flight transmission.


Subject(s)
Air Travel , COVID-19 , Travel-Related Illness , COVID-19/epidemiology , COVID-19/transmission , Disease Outbreaks , Hong Kong , Humans , India , Phylogeny
5.
Emerg Infect Dis ; 27(10): 2666-2668, 2021 10.
Article in English | MEDLINE | ID: mdl-34545799

ABSTRACT

We sequenced 10% of imported severe acute respiratory syndrome coronavirus 2 infections detected in travelers to Hong Kong and revealed the genomic diversity of regions of origin, including lineages not previously reported from those countries. Our results suggest that international or regional travel hubs might be useful surveillance sites to monitor sequence diversity.


Subject(s)
COVID-19 , Communicable Diseases, Imported , Genetic Variation , Hong Kong/epidemiology , Humans , SARS-CoV-2
6.
Diagn Microbiol Infect Dis ; 101(4): 115490, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34399380

ABSTRACT

RT-PCR is the gold standard to detect SARS-CoV-2, however, its capacity is limited. We evaluated an automated antigen detection (AAD) test, Elecsys SARS-CoV-2 Antigen (Roche, Germany), for detecting SARS-CoV-2. We compared the limit of detection (LOD) between AAD test, rapid antigen detection (RAD) test; SARS-CoV-2 Rapid Antigen Test (SD Biosensor, Korea), and in-house RT-PCR test. LOD results showed that the AAD test was 100 fold more sensitive than the RAD test, while the sensitivity of the AAD test was comparable to the RT-PCR test. The AAD test detected between 85.7% and 88.6% of RT-PCR-positive specimens collected from COVID-19 patients, false negative results were observed for specimens with Ct values >30. Although clinical sensitivity for the AAD test was not superior or comparable to the RT-PCR test in the present study, the AAD test may be an alternative to RT-PCR test in terms of turn-around time and throughput.


Subject(s)
Antigens, Viral/isolation & purification , COVID-19 Serological Testing/methods , COVID-19/virology , Reagent Kits, Diagnostic , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing , Diagnostic Tests, Routine , Humans , Limit of Detection , Sensitivity and Specificity , Viral Load
7.
medRxiv ; 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34189537

ABSTRACT

Hong Kong utilized an elimination strategy with intermittent use of public health and social measures and increasingly stringent travel regulations to control SARS-CoV-2 transmission. By analyzing >1700 genome sequences representing 17% of confirmed cases from 23-January-2020 to 26-January-2021, we reveal the effects of fluctuating control measures on the evolution and epidemiology of SARS-CoV-2 lineages in Hong Kong. Despite numerous importations, only three introductions were responsible for 90% of locally-acquired cases, two of which circulated cryptically for weeks while less stringent measures were in place. We found that SARS-CoV-2 within-host diversity was most similar among transmission pairs and epidemiological clusters due to a strong transmission bottleneck through which similar genetic background generates similar within-host diversity. ONE SENTENCE SUMMARY: Out of the 170 detected introductions of SARS-CoV-2 in Hong Kong during 2020, three introductions caused 90% of community cases.

8.
Emerg Infect Dis ; 27(8): 2230-2232, 2021 08.
Article in English | MEDLINE | ID: mdl-34004137

ABSTRACT

To investigate a superspreading event at a fitness center in Hong Kong, China, we used genomic sequencing to analyze 102 reverse transcription PCR-confirmed cases of severe acute respiratory syndrome coronavirus 2 infection. Our finding highlights the risk for virus transmission in confined spaces with poor ventilation and limited public health interventions.


Subject(s)
COVID-19 , Fitness Centers , China/epidemiology , Hong Kong/epidemiology , Humans , SARS-CoV-2
9.
J Med Virol ; 93(9): 5644-5647, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33951208

ABSTRACT

In 2020, numerous fast-spreading severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been reported. These variants had unusually high genetic changes in the spike (S) protein. In an attempt to understand the genetic background of SARS-CoV-2 viruses in Hong Kong, especially before vaccination, the purpose of this study is to summarize the S protein mutations detected among coronavirus disease 2019 (COVID-19) patients in Hong Kong in 2020. COVID-19 cases were selected every month in 2020. One virus from each case was analyzed. The full encoding region of the S proteins was sequenced. From January 2020 to December 2020, a total of 340 COVID-19 viruses were sequenced. The amino acids of the S protein for 44 (12.9%) were identical to the reference sequence, WIV04 (GenBank accession MN996528). For the remaining 296 sequences (87.1%), a total of 43 nonsynonymous substitution patterns were found. Of the nonsynonymous substitutions found, some of them were only detected at specific time intervals and then they disappeared. The ongoing genetic surveillance system is important. It would facilitate early detection of mutations that can increase infectivity as well as mutations that are selected for the virus to escape immunological restraint.


Subject(s)
COVID-19/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Base Sequence , COVID-19/epidemiology , Genome, Viral/genetics , Hong Kong/epidemiology , Humans , Mutation
10.
Emerg Infect Dis ; 27(5): 1492-1495, 2021 05.
Article in English | MEDLINE | ID: mdl-33900193

ABSTRACT

We describe an introduction of clade GH severe acute respiratory syndrome coronavirus 2 causing a fourth wave of coronavirus disease in Hong Kong. The virus has an ORF3a-Q57H mutation, causing truncation of ORF3b. This virus evades induction of cytokine, chemokine, and interferon-stimulated gene expression in primary human respiratory cells.


Subject(s)
COVID-19 , Epidemics , China , Hong Kong/epidemiology , Humans , SARS-CoV-2
11.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33414279

ABSTRACT

Candida auris is an emerging human pathogen associated with multidrug resistance and nosocomial outbreaks. We report the draft genome sequences of 19 C. auris isolates that were associated with a cluster of cases in a hospital in Hong Kong.

12.
J Clin Virol ; 134: 104712, 2021 01.
Article in English | MEDLINE | ID: mdl-33338894

ABSTRACT

BACKGROUND: Currently, there are two rapid antigen detection (RAD) kits from the WHO Emergency Use List for detecting SARS-CoV-2. OBJECTIVE: The Panbio COVID-19 Ag Rapid Test Device was selected to evaluate the performance for detecting SARS-CoV-2. STUDY DESIGN: Analytical sensitivity for the detection of SARS-CoV-2 virus was determined by limit of detection (LOD) using RT-PCR as a reference method. Clinical sensitivity was evaluated by using respiratory specimens collected from confirmed COVID-19 patients. RESULTS: The LOD results showed that the RAD kit was 100 fold less sensitive than RT-PCR. Clinical sensitivity of the RAD kit was 68.6 % for detecting specimens from COVID-19 patients. CONCLUSIONS: The RAD kit evaluated in the present study shared similar performance with another kit from the WHO Emergency Use List, the Standard Q COVID-19 Ag. Understanding the clinical characteristics of RAD kits can guide us to decide different testing strategies in different settings.


Subject(s)
Antigens, Viral/analysis , COVID-19/diagnosis , Reagent Kits, Diagnostic/standards , SARS-CoV-2/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Testing/methods , Cross Reactions , Hong Kong , Humans , Limit of Detection , Nasopharynx/virology , Pharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/pathogenicity , World Health Organization
13.
J Clin Virol Plus ; 1(3): 100029, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35262015

ABSTRACT

Background: Prior to this report, variants of concern for SARS-CoV-2 were only detected from imported cases in Hong Kong. Objective: Multiple cases of SARS-CoV-2 lineage B.1.351 have been identified in local community. We reported the phylogenetic relationship of these cases. Study design: SARS-CoV-2 cases were screened for the key non-synonymous substitutions in spike protein by different assays. Preliminary positive cases were further tested by whole genome sequencing. Results: From Dec 2020 to May 2021, 55 SARS-CoV-2 cases belonged to lineage B.1.351. Among them, eight genomes were clustered together, all of them were local cases with epidemiological link. Conclusions: To track variants of SARS-CoV-2 and to allow early implementation of control measures, SARS-CoV-2 genomic surveillance must be consistently performed.

14.
Emerg Infect Dis ; 26(11): 2713-2716, 2020 11.
Article in English | MEDLINE | ID: mdl-32946370

ABSTRACT

Four persons with severe acute respiratory syndrome coronavirus 2 infection had traveled on the same flight from Boston, Massachusetts, USA, to Hong Kong, China. Their virus genetic sequences are identical, unique, and belong to a clade not previously identified in Hong Kong, which strongly suggests that the virus can be transmitted during air travel.


Subject(s)
Air Travel , Betacoronavirus , Coronavirus Infections/transmission , Disease Transmission, Infectious/statistics & numerical data , Pneumonia, Viral/transmission , Travel-Related Illness , Adult , Aged , Boston/epidemiology , COVID-19 , Coronavirus Infections/epidemiology , Female , Hong Kong/epidemiology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
15.
Emerg Infect Dis ; 26(11): 2701-2704, 2020 11.
Article in English | MEDLINE | ID: mdl-32749957

ABSTRACT

We investigated 68 respiratory specimens from 35 coronavirus disease patients in Hong Kong, of whom 32 had mild disease. We found that severe acute respiratory syndrome coronavirus 2 and subgenomic RNA were rarely detectable beyond 8 days after onset of illness. However, virus RNA was detectable for many weeks by reverse transcription PCR.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Pneumonia, Viral/virology , RNA, Viral/analysis , Respiratory System/virology , Severity of Illness Index , Adult , Aged , COVID-19 , Female , Hong Kong , Humans , Male , Middle Aged , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
17.
Saf Health Work ; 11(3): 372-377, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32837739

ABSTRACT

Infection risks of handling specimens associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by public health laboratory services teams were assessed to scrutinize the potential hazards arising from the work procedures. Through risk assessments of all work sequences, laboratory equipment, and workplace environments, no aerosol-generating procedures could be identified except the procedures (mixing and transfer steps) inside biological safety cabinets. Appropriate personal protective equipment (PPE) such as surgical masks, protective gowns, face shields/safety goggles, and disposable gloves, together with pertinent safety training, was provided for laboratory work. Proper disinfection and good hand hygiene practices could minimize the probability of SARS-CoV-2 infection at work. All residual risk levels of the potential hazards identified were within the acceptable level. Contamination by gloved hands was considered as a major exposure route for SARS-CoV-2 when compared with eye protection equipment. Competence in proper donning and doffing of PPE accompanied by hand washing techniques was of utmost importance for infection control.

18.
Nature ; 586(7831): 776-778, 2020 10.
Article in English | MEDLINE | ID: mdl-32408337

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Wuhan in December 2019 and caused coronavirus disease 2019 (COVID-19)1,2. In 2003, the closely related SARS-CoV had been detected in domestic cats and a dog3. However, little is known about the susceptibility of domestic pet mammals to SARS-CoV-2. Here, using PCR with reverse transcription, serology, sequencing the viral genome and virus isolation, we show that 2 out of 15 dogs from households with confirmed human cases of COVID-19 in Hong Kong were found to be infected with SARS-CoV-2. SARS-CoV-2 RNA was detected in five nasal swabs collected over a 13-day period from a 17-year-old neutered male Pomeranian. A 2.5-year-old male German shepherd was positive for SARS-CoV-2 RNA on two occasions and virus was isolated from nasal and oral swabs. Antibody responses were detected in both dogs using plaque-reduction-neutralization assays. Viral genetic sequences of viruses from the two dogs were identical to the virus detected in the respective human cases. The dogs remained asymptomatic during quarantine. The evidence suggests that these are instances of human-to-animal transmission of SARS-CoV-2. It is unclear whether infected dogs can transmit the virus to other animals or back to humans.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Coronavirus Infections/veterinary , Dog Diseases/transmission , Dog Diseases/virology , Pandemics/veterinary , Pneumonia, Viral/transmission , Pneumonia, Viral/veterinary , Zoonoses/transmission , Zoonoses/virology , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Dogs , Female , Hong Kong/epidemiology , Humans , Male , Middle Aged , Peptidyl-Dipeptidase A/metabolism , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Receptors, Virus/metabolism , SARS-CoV-2 , Time Factors
20.
Front Microbiol ; 9: 334, 2018.
Article in English | MEDLINE | ID: mdl-29527202

ABSTRACT

Objective: This study evaluated the capability of a MALDI Biotyper system equipped with the newly introduced MBT STAR-BL module to simultaneously perform species identification and ß-lactamase-mediated resistance detection in bacteremia -causing bacteria isolated from cultured isolates and patient-derived blood cultures (BCs). Methods: Two hundred retrospective cultured isolates and 153 prospective BCs containing Gram-negative rods (GNR) were collected and subjected to direct bacterial identification, followed by the measurement of ß-lactamase activities against ampicillin, piperacillin, cefotaxime, ceftazidime, and meropenem using the MBT STAR-BL module. The results and turnaround times were compared with those of routine microbiological processing. All strains were also characterized by beta-lactamase PCR and sequencing. Results: Using the saponin-based extraction method, MALDI-TOF MS correctly identified bacteria in 116/134 (86.6%) monomicrobial BCs. The detection sensitivities for ß-lactamase activities against ampicillin, piperacillin, third-generation cephalosporin and meropenem were 91.3, 100, 97.9, and 100% for cultured isolates, and 80.4, 100, 68.8, and 40% for monomicrobial BCs (n = 134) respectively. The overall specificities ranged from 91.5 to 100%. Furthermore, the MBT STAR-BL and conventional drug susceptibility test results were concordant in 14/19 (73.7%) polymicrobial cultures. Reducing the logRQ cut-off value from 0.4 to 0.2 increased the direct detection sensitivities for ß-lactamase activities against ampicillin, cefotaxime and meropenem in BCs to 85.7, 87.5, and 100% respectively. The MBT STAR-BL test enabled the reporting of ß-lactamase-producing GNR at 14.16 and 47.64 h before the interim and final reports of routine BCs processing, respectively, were available. Conclusion: The MALDI Biotyper system equipped with the MBT STAR-BL module enables the simultaneous rapid identification of bacterial species and ß-lactamase-mediated resistance from BCs and cultured isolates. Adjustment of the logRQ cut-off value to 0.2 significantly increased the detection sensitivities for clinically important drug-resistant pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...