Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7722, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35545658

ABSTRACT

We propose an asymmetric cryptosystem based on optical scanning cryptography (OSC) and elliptic curve cryptography (ECC) algorithm. In the encryption stage of OSC, an object is encrypted to cosine and sine holograms by two pupil functions calculated via ECC algorithm from sender's biometric image, which is sender's private key. With the ECC algorithm, these holograms are encrypted to ciphertext, which is sent to the receiver. In the stage of decryption, the encrypted holograms can be decrypted by receiver's biometric private key which is different from the sender's private key. The approach is an asymmetric cryptosystem which solves the problem of the management and dispatch of keys in OSC and has more security strength than the conventional OSC. The feasibility of the proposed method has been convincingly verified by numerical and experiment results.

2.
Sci Rep ; 7(1): 12933, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021574

ABSTRACT

We propose an optical cryptosystem for encrypting images of multi-depth objects based on the combination of optical heterodyne technique and fingerprint keys. Optical heterodyning requires two optical beams to be mixed. For encryption, each optical beam is modulated by an optical mask containing either the fingerprint of the person who is sending, or receiving the image. The pair of optical masks are taken as the encryption keys. Subsequently, the two beams are used to scan over a multi-depth 3-D object to obtain an encrypted hologram. During the decryption process, each sectional image of the 3-D object is recovered by convolving its encrypted hologram (through numerical computation) with the encrypted hologram of a pinhole image that is positioned at the same depth as the sectional image. Our proposed method has three major advantages. First, the lost-key situation can be avoided with the use of fingerprints as the encryption keys. Second, the method can be applied to encrypt 3-D images for subsequent decrypted sectional images. Third, since optical heterodyning scanning is employed to encrypt a 3-D object, the optical system is incoherent, resulting in negligible amount of speckle noise upon decryption. To the best of our knowledge, this is the first time optical cryptography of 3-D object images has been demonstrated in an incoherent optical system with biometric keys.

3.
Article in English | MEDLINE | ID: mdl-26357044

ABSTRACT

The inverse problem of identifying unknown parameters of known structure dynamical biological systems, which are modelled by ordinary differential equations or delay differential equations, from experimental data is treated in this paper. A two stage approach is adopted: first, combine spline theory and Nonlinear Programming (NLP), the parameter estimation problem is formulated as an optimization problem with only algebraic constraints; then, a new differential evolution (DE) algorithm is proposed to find a feasible solution. The approach is designed to handle problem of realistic size with noisy observation data. Three cases are studied to evaluate the performance of the proposed algorithm: two are based on benchmark models with priori-determined structure and parameters; the other one is a particular biological system with unknown model structure. In the last case, only a set of observation data available and in this case a nominal model is adopted for the identification. All the test systems were successfully identified by using a reasonable amount of experimental data within an acceptable computation time. Experimental evaluation reveals that the proposed method is capable of fast estimation on the unknown parameters with good precision.


Subject(s)
Algorithms , Models, Biological , Systems Biology/methods , Animals , Mammals , Reproducibility of Results , Signal Transduction , Yeasts
4.
Appl Opt ; 52(1): A26-32, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23292402

ABSTRACT

Past research has demonstrated that, by downsampling the source object scene in multiple directions, a binary Fresnel hologram can be generated to preserve favorable quality on the reconstructed image. In this paper, we will show that a binary hologram generated with such an approach is also insensitive to noise contamination. On this basis, we propose a method to embed an intensity image into the binary hologram. To prevent the embedded information from being tampered or retrieved with unauthorized means, scrambling is applied to relocate each pixel to a unique position in the binary hologram according to a random assignment that is only known with the availability of a descrambling key. Experimental results demonstrate that our proposed method is capable of embedding an intensity image that is one quarter the size of the binary hologram without causing observable degradation on the reconstructed image. In addition, the embedded image can be retrieved with acceptable quality even if the binary hologram is damaged and contaminated with noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...