Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
Pathogens ; 13(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38668279

ABSTRACT

The objective of this study was the presentation of quantitative characteristics regarding the scientific content and bibliometric details of the relevant publications. In total, 156 papers were considered. Most papers presented original studies (n = 135), and fewer were reviews (n = 21). Most original articles (n = 101) referred to work involving cattle. Most original articles described work related to the diagnosis (n = 72) or pathogenesis (n = 62) of mastitis. Most original articles included field work (n = 75), whilst fewer included experimental (n = 31) or laboratory (n = 30) work. The tissue assessed most frequently in the studies was milk (n = 59). Milk was assessed more frequently in studies on the diagnosis (61.1% of relevant studies) or pathogenesis (30.6%) of the infection, but mammary tissue was assessed more frequently in studies on the treatment (31.0%). In total, 47 pathogens were included in the studies described; most were Gram-positive bacteria (n = 34). The three bacteria most frequently included in the studies were Staphylococcus aureus (n = 55 articles), Escherichia coli (n = 31) and Streptococcus uberis (n = 19). The proteomics technology employed more often in the respective studies was liquid chromatography-tandem mass spectrometry (LC-MS/MS), either on its own (n = 56) or in combination with other technologies (n = 40). The median year of publication of articles involving bioinformatics or LC-MS/MS and bioinformatics was the most recent: 2022. The 156 papers were published in 78 different journals, most frequently in the Journal of Proteomics (n = 16 papers) and the Journal of Dairy Science (n = 12). The median number of cited references in the papers was 48. In the papers, there were 1143 co-authors (mean: 7.3 ± 0.3 co-authors per paper, median: 7, min.-max.: 1-19) and 742 individual authors. Among them, 15 authors had published at least seven papers (max.: 10). Further, there were 218 individual authors who were the first or last authors in the papers. Most papers were submitted for open access (n = 79). The median number of citations received by the 156 papers was 12 (min.-max.: 0-339), and the median yearly number of citations was 2.0 (min.-max.: 0.0-29.5). The h-index of the papers was 33, and the m-index was 2. The increased number of cited references in papers and international collaboration in the respective study were the variables associated with most citations to published papers. This is the first ever scientometrics evaluation of proteomics studies, the results of which highlighted the characteristics of published papers on mastitis and proteomics. The use of proteomics in mastitis research has focused on the elucidation of pathogenesis and diagnosis of the infection; LC-MS/MS has been established as the most frequently used proteomics technology, although the use of bioinformatics has also emerged recently as a useful tool.

2.
Expert Rev Proteomics ; 20(12): 319-330, 2023.
Article in English | MEDLINE | ID: mdl-37874610

ABSTRACT

INTRODUCTION: Female fertility has been a field of interest for the scientific community throughout the years. The contribution of proteomics in the study of female fertility as well as female infertility and in vitro fertilization (IVF) has been significant. Proteomics is a recently developed field, extensively applied to the identification and quantification of proteins, which could be used as potential biomarkers in a diagnostic, prognostic, or predictive manner in a variety of medical conditions. AREAS COVERED: The present review focuses on proteomic studies of the oocyte and endometrial environment as well as on conditions related to infertility, such as polycystic ovarian syndrome, endometriosis, obesity, and unexplained infertility. Moreover, this review presents studies that have been done in an effort to search for fertility biomarkers in individuals following the IVF procedure. EXPERT OPINION: The comprehension of the molecular pathways behind female fertility and infertility could contribute to the diagnosis, prognosis, and prediction of infertility. Moreover, the identification of proteomic biomarkers for IVF cycles could predict the possible outcome of an IVF cycle, prevent an unsuccessful IVF, and monitor the IVF cycle in a personalized manner, leading to increased success rates. [Figure: see text].


Subject(s)
Infertility, Female , Proteomics , Humans , Female , Fertilization in Vitro/methods , Fertility/genetics , Biomarkers
3.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373309

ABSTRACT

Based on the results of previously performed clinical studies, cathelicidin-1 has been proposed as a potential biomarker for the early diagnosis of mastitis in ewes. It has been hypothesized that the detection of unique peptides (defined as a peptide, irrespective of its length, that exists in only one protein of a proteome of interest) and core unique peptides (CUPs) (representing the shortest peptide that is unique) of cathelicidin-1 may potentially improve its identification and consequently the diagnosis of sheep mastitis. Peptides of sizes larger than those of the size of CUPs, which include consecutive or over-lapping CUPs, have been defined as 'composite core unique peptides' (CCUPs). The primary objective of the present study was the investigation of the sequence of cathelicidin-1 detected in ewes' milk in order to identify its unique peptides and core unique peptides, which would reveal potential targets for accurate detection of the protein. An additional objective was the detection of unique sequences among the tryptic digest peptides of cathelicidin-1, which would improve accuracy of identification of the protein when performing targeted MS-based proteomics. The potential uniqueness of each peptide of cathelicidin-1 was investigated using a bioinformatics tool built on a big data algorithm. A set of CUPs was created and CCUPs were also searched. Further, the unique sequences in the tryptic digest peptides of cathelicidin-1 were also detected. Finally, the 3D structure of the protein was analyzed from predicted models of proteins. In total, 59 CUPs and four CCUPs were detected in cathelicidin-1 of sheep origin. Among tryptic digest peptides, there were six peptides that were unique in that protein. After 3D structure analysis of the protein, 35 CUPs were found on the core of cathelicidin-1 of sheep origin and among them, 29 were located on amino acids in regions of the protein with 'very high' or 'confident' estimates of confidence of the structure. Ultimately, the following six CUPs: QLNEQ, NEQS, EQSSE, QSSEP, EDPD, DPDS, are proposed as potential antigenic targets for cathelicidin-1 of sheep. Moreover, another six unique peptides were detected in tryptic digests and offer novel mass tags to facilitate the detection of cathelicidin-1 during MS-based diagnostics.


Subject(s)
Cathelicidins , Mastitis , Humans , Animals , Female , Sheep , Milk/chemistry , Proteome/analysis , Mastitis/diagnosis , Mastitis/metabolism , Early Diagnosis
4.
Vet Sci ; 9(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36548858

ABSTRACT

The objectives of the present work were to evaluate the semen of dogs by means of proteomics methods and to compare with proteomics results of the blood of the animals, in order to increase available knowledge on the topic and present relevant reference values for semen samples. Semen samples were collected from five Beagle-breed dogs. Reproductive assessment of the animals by means of clinical, ultrasonographic and seminological examinations confirmed their reproductive health. The sperm-rich fraction and the prostatic fraction of semen were processed for proteomics evaluation. LC-MS/MS analysis was performed by means of a LTQ Orbitrap Elite system. The technology combines high separation capacity and strong qualitative ability of proteins in biological samples that require deep proteome coverage. Protein classification was performed based on their functional annotations using Gene Ontology (GO). In blood plasma, semen sperm-rich fraction, and semen prostatic fraction, 59, 42 and 43 proteins, respectively, were detected. Two proteins were identified simultaneously in plasma and the semen sperm-rich fraction, 11 proteins in plasma and the semen prostatic fraction, and three proteins in the semen sperm-rich and prostatic fractions. In semen samples, most proteins were related to cell organization and biogenesis, metabolic processes or transport of ions and molecules. Most proteins were located in the cell membrane, the cytosol or the nucleus. Finally, most proteins performed functions related to binding or enzyme regulation. There were no differences between the semen sperm-rich fraction and prostatic fractions in terms of the clustering of proteins. In conclusion, a baseline reference for proteins in the semen of Beagle-breed dogs is provided. These proteins are involved mostly in supporting spermatozoan maturation, survival and motility, enhancing the reproductive performance of male animals. There appears potential for the proteomics examination of semen to become a tool in semen evaluation. This analysis may potentially identify biomarkers for reproductive disorders. This can be particularly useful in stud animals, also given its advantage as a non-invasive method.

5.
EPMA J ; 13(2): 237-260, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35719135

ABSTRACT

The evolution of the field of assisted reproduction technology (ART) in the last 40 years has significantly contributed to the management of global infertility. Despite the great numbers of live births that have been achieved through ART, there is still potential for increasing the success rates. As a result, there is a need to create optimum conditions in order to increase ART efficacy. The selection of the best sperm, oocyte, and embryo, as well as the achievement of optimal endometrial receptivity, through the contribution of new diagnostic and treatment methods, based on a personalized proteomic approach, may assist in the attainment of this goal. Proteomics represent a powerful new technological development, which seeks for protein biomarkers in human tissues. These biomarkers may aid to predict the outcome, prevent failure, and monitor in a personalized manner in vitro fertilization (IVF) cycles. In this review, we will present data from studies that have been conducted in the search for such biomarkers in order to identify proteins related to good sperm, oocyte, and embryo quality, as well as optimal endometrial receptivity, which may later lead to greater results and the desirable ART outcome.

6.
Heliyon ; 8(4): e09222, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35399374

ABSTRACT

SARS-CoV-2 pandemic has necessitated the identification of sequence areas in the viral proteome that are capable to serve as antigenic sites and treatment targets. In the present study, we have applied a novel approach for mechanistically illuminating the virus-host organism interactions, by analyzing the Unique Peptides (UPs) of the virus featured by a minimum amino acid sequence length being defined as Core Unique Peptides (CrUPs), not of the virus per se, but against the entire proteome of the host organism. This approach resulted in the identification of CrUPs of the virus itself, which could not be recognized in the host organism proteome. Thereby, we analyzed the SARS-CoV-2 proteome for identification of CrUPs against the human proteome, which have been defined as C/H-CrUPs. We herein reveal that SARS-CoV-2 include 7.503 C/H-CrUPs, with the SPIKE_SARS2 being detected as the protein with the highest density of C/H-CrUPs. Extensive analysis has indicated that the critical P681R mutation produces new C/H-CrUPs around the R685 cleavage site, while the L452R mutation causes loss of antigenicity of the NF9 peptide and strong(er) binding of the virus to its ACE2 receptor protein. Simultaneous formation of these mutations in detrimental variants like Delta leads to the immune escape of the virus, its massive entrance into the host cell, a notable increase in virus formation, and its massive release and thus elevated infectivity of human target cells.

7.
Data Brief ; 39: 107507, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34765701

ABSTRACT

Donkey's milk has been recognized as milk of high biological value and it also has the closest composition to human milk. However, the total protein content of donkey's milk has not been adequately identified. The aim of this analysis is to investigate the proteomic content of that milk. Specific commercially available only milk was analyzed by ``shotgun'' proteomic methods to identify the proteins it contained in as much detail as possible. The application of the above approach resulted in the identification of a total of 633 different proteins, which were grouped based on their molecular function and their biological process. Furthermore, the proteins visualized graphically according to the GeneOntology (GO) system. The identified proteins confirm the high nutritional value of the donkey milk, governing future steps in optimizing its characteristic and uses.

8.
Proteomes ; 9(3)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208880

ABSTRACT

'One Health' summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.

9.
Cancers (Basel) ; 13(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922182

ABSTRACT

Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-ß controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.

10.
Metabolites ; 11(2)2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33513809

ABSTRACT

The national infrastructure FoodOmicsGR_RI coordinates research efforts from eight Greek Universities and Research Centers in a network aiming to support research and development (R&D) in the agri-food sector. The goals of FoodOmicsGR_RI are the comprehensive in-depth characterization of foods using cutting-edge omics technologies and the support of dietary/nutrition studies. The network combines strong omics expertise with expert field/application scientists (food/nutrition sciences, plant protection/plant growth, animal husbandry, apiculture and 10 other fields). Human resources involve more than 60 staff scientists and more than 30 recruits. State-of-the-art technologies and instrumentation is available for the comprehensive mapping of the food composition and available genetic resources, the assessment of the distinct value of foods, and the effect of nutritional intervention on the metabolic profile of biological samples of consumers and animal models. The consortium has the know-how and expertise that covers the breadth of the Greek agri-food sector. Metabolomics teams have developed and implemented a variety of methods for profiling and quantitative analysis. The implementation plan includes the following research axes: development of a detailed database of Greek food constituents; exploitation of "omics" technologies to assess domestic agricultural biodiversity aiding authenticity-traceability control/certification of geographical/genetic origin; highlighting unique characteristics of Greek products with an emphasis on quality, sustainability and food safety; assessment of diet's effect on health and well-being; creating added value from agri-food waste. FoodOmicsGR_RI develops new tools to evaluate the nutritional value of Greek foods, study the role of traditional foods and Greek functional foods in the prevention of chronic diseases and support health claims of Greek traditional products. FoodOmicsGR_RI provides access to state-of-the-art facilities, unique, well-characterised sample sets, obtained from precision/experimental farming/breeding (milk, honey, meat, olive oil and so forth) along with more than 20 complementary scientific disciplines. FoodOmicsGR_RI is open for collaboration with national and international stakeholders.

11.
Childs Nerv Syst ; 37(3): 767-770, 2021 03.
Article in English | MEDLINE | ID: mdl-32377827

ABSTRACT

Ependymomas, affecting both children and adults, are neuroepithelial tumors occurring throughout all compartments of the central nervous system. Pediatric ependymomas arise almost exclusively intracranially and are associated with a poor 10-year overall survival of around 60%. During the last years, the application of multi-omics technologies on the study and understanding of neuro-cancer diseases has become a standard; in this regard, application of these approaches on ependymomas has gained noticeable momentum. The objective of this review article was to summarize all knowledge generated by the application of modern omics approaches with regard to pediatric ependymal tumors, aiming at elucidating molecular mechanisms of oncogenesis as well as identification of pathway strategies that will help in therapeutic intervention.


Subject(s)
Ependymoma , Proteomics , Adult , Child , Ependymoma/genetics , Humans
12.
Cancer Genomics Proteomics ; 17(6): 757-767, 2020.
Article in English | MEDLINE | ID: mdl-33099477

ABSTRACT

BACKGROUND/AIM: Proteomics technologies provide fundamental insights into the high organizational complexity and diversity of the central nervous system. In the present study, high-resolution mass spectrometry (MS) was applied in order to identify whole-proteome content of anatomically distinct and functionally specific mouse brain regions. MATERIALS AND METHODS: Brains from eight 8-week-old C57BL/6N normal male mice were separated into seven anatomically district regions. The protein content of each region was analyzed by high-throughput nano-liquid chromatography-MS/MS Orbitrap elite technology. RESULTS: A total of 16,574 proteins were identified: 2,795 in cerebral cortex, 2,311 in olfactory bulb, 2,246 in hippocampus, 2,247 in hypothalamus, 2,250 in mid brain, 2,334 in cerebellum and 2,391 in medulla. Of these proteins, 534 were uniquely expressed in cerebral cortex, 323 in olfactory bulb, 230 in hippocampus, 272 in hypothalamus, 1,326 in mid brain, 320 in cerebellum and 268 in medulla. CONCLUSION: These data represent the most comprehensive proteomic map of the normal mouse brain and they might further be used in studies related to brain diseases, including cancer and neurodegenerative diseases.


Subject(s)
Brain/metabolism , Chromatography, Liquid/methods , Proteome/analysis , Proteome/metabolism , Tandem Mass Spectrometry/methods , Animals , Male , Mice , Mice, Inbred C57BL
13.
Sci Rep ; 10(1): 5430, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32214222

ABSTRACT

Drosophila brain has emerged as a powerful model system for the investigation of genes being related to neurological pathologies. To map the proteomic landscape of fly brain, in a high-resolution scale, we herein employed a nano liquid chromatography-tandem mass spectrometry technology, and high-content catalogues of 7,663 unique peptides and 2,335 single proteins were generated. Protein-data processing, through UniProt, DAVID, KEGG and PANTHER bioinformatics subroutines, led to fly brain-protein classification, according to sub-cellular topology, molecular function, implication in signaling and contribution to neuronal diseases. Given the importance of Ubiquitin Proteasome System (UPS) in neuropathologies and by using the almost completely reassembled UPS, we genetically targeted genes encoding components of the ubiquitination-dependent protein-degradation machinery. This analysis showed that driving RNAi toward proteasome components and regulators, using the GAL4-elav.L driver, resulted in changes to longevity and climbing-activity patterns during aging. Our proteomic map is expected to advance the existing knowledge regarding brain biology in animal species of major translational-research value and economical interest.


Subject(s)
Brain/metabolism , Drosophila Proteins/metabolism , Drosophila/genetics , ELAV Proteins/genetics , Nervous System Diseases/etiology , Nervous System Diseases/genetics , Proteasome Endopeptidase Complex/genetics , Proteolysis , Proteomics/methods , Transcription Factors/genetics , Ubiquitination/genetics , Animals , Animals, Genetically Modified , Drosophila/physiology , Drosophila Proteins/genetics , Female , Humans , Locomotion/genetics , Longevity/genetics , Male , RNA Interference , Ubiquitin/metabolism
14.
Data Brief ; 29: 105259, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32090163

ABSTRACT

Bacteriological, cytological and proteomics data have been obtained from ewes in two experiments, after intramammary challenge with Mannheimia haemolytica or Staphylococcus chromogenes. Animals were sampled before and sequentially after challenge. Conventional techniques were employed for bacterial isolation and somatic cell counting in milk samples; milk whey samples were subjected to proteomics evaluation by using two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. There was a correlation between leucocyte content and cathelicidin-1 spot densities in milk samples, although the protein was detected in milk earlier than the increase in leucocyte content. There was also a significant association between presence of mastitis in a mammary gland and detection of cathelicidin-1 in the respective milk sample; the degree of association was greater during the first 24 h post-inoculation. The data are further discussed in the research article "Detection of cathelicidin-1 in the milk as an early indicator of mastitis in ewes" [1].

15.
Pathogens ; 8(4)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795190

ABSTRACT

The objective of the study was the investigation of the behaviour of cathelicidin-1 in the milk after experimental infection with two prominent bacterial pathogens (experiment 1: Mannheimia haemolytica, experiment 2: M. haemolytica and Staphylococcus chromogenes) as a potential early indicator for diagnosis of mastitis in sheep. In two experiments, after bacterial inoculation into the udder of ewes, bacteriological and cytological examinations of milk samples as well as proteomics examinations [two-dimensional gel electrophoresis analysis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) analysis] were performed sequentially. Cathelicidin-1 was detected and spot densities obtained from PDQuest v.8.0 were recorded. Associations were calculated between cell content and spot densities as well as between presence of mastitis in a mammary gland at a given time-point and detection of cathelicidin-1 in the respective milk sample. All inoculated mammary glands developed mastitis, confirmed by the consistent bacterial isolation from mammary secretion and increased leucocyte content therein. Spot density of cathelicidin-1 in samples from inoculated glands increased 3 h post-inoculation; spot density of cathelicidin-1 in samples from inoculated glands was higher than in samples from uninoculated controls. There was clear evidence of correlation between cell content and cathelicidin-1 spot densities in milk samples. There was significant association between presence of mastitis in the mammary gland and detection of cathelicidin-1 in the respective milk sample; overall accuracy was 0.818-this was significantly greater during the first 24 h post-challenge (0.903) than after the first day (0.704). In conclusion, detection of cathelicidin-1 in milk was significantly associated with presence of mastitis in ewes. The associations were stronger during the first 24 h post-infection than after the first day. Cathelicidin-1 has the advantage that it can be a non-specific biomarker, as simply a "positive" / "negative" assessment would be sufficient.

16.
Proteomes ; 7(4)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546575

ABSTRACT

Milk and dairy products are a major functional food group of growing scientific and commercial interest due to their nutritional value and bioactive "load". A major fraction of the latter is attributed to milk's rich protein content and its biofunctional peptides that occur naturally during digestion. On the basis of the identified proteome datasets of milk whey from sheep and goat breeds in Greece and feta cheese obtained during previous work, we applied an in silico workflow to predict and characterise the antimicrobial peptide content of these proteomes. We utilised existing tools for predicting peptide sequences with antimicrobial traits complemented by in silico protein cleavage modelling to identify frequently occurring antimicrobial peptides (AMPs) in the gastrointestinal (GI) tract in humans. The peptides of interest were finally assessed for their stability with respect to their susceptibility to cleavage by endogenous proteases expressed along the intestinal part of the GI tract and ranked with respect to both their antimicrobial and stability scores.

17.
Data Brief ; 25: 104259, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31384649

ABSTRACT

Proteomics data have been obtained from experimental mastitis in ewes after intramammary challenge with Mannheimia haemolytica. Animals were sampled before and sequentially after challenge; blood plasma and milk whey samples were produced and were subjected to proteomics evaluation by means of two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. Full protein maps and differential proteomics in sequential samples from blood plasma and milk whey of experimental ewes were presented. Post-challenge, 33 and 89 proteins were identified with differential abundance in blood plasma and milk whey, respectively. Also, 74 proteins were identified with differential abundance between the inoculated and contralateral glands. The data provide further insight in the pathogenesis of mastitis in sheep and indicate potential biomarkers for the disease. The data are further discussed in the research article "Differential quantitative proteomics study of experimental Mannheimia haemolytica mastitis in sheep" [1].

18.
J Proteomics ; 205: 103393, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31154024

ABSTRACT

Objective was the differential quantitative proteomics study of ovine mastitis induced by Mannheimia haemolytica; clinical, microbiological, cytological and histopathological methods were employed for confirmation and monitoring. Proteins were separated by two-dimensional gel electrophoresis (2-DE) for all samples and differentially abundant proteins were identified by mass spectrometry; comparisons were performed with pre- (blood, milk) and post- (milk of contralateral gland) inoculation findings. Animals developed mastitis, confirmed by isolation of challenge strain and increase of neutrophils in milk and by histopathological evidence. In blood plasma, 33 differentially abundant proteins (compared to findings before challenge) were identified: 6 with decrease, 13 with new appearance and 14 with varying abundance. In a post-challenge milk whey protein reference map, 65 proteins were identified; actin cytoplasmic-1, beta-lactoglobulin-1/B, cathelicidin-1 predominated. Further, 89 differentially abundant proteins (compared to findings before challenge) were identified: 18 with decrease, 53 with new appearance, 3 with increase and 15 with varying abundance; 15 proteins showed status changes in blood plasma and milk whey. Differential abundance from inoculated and contralateral glands revealed 74 proteins only from the inoculated gland. Most differentially abundant proteins in milk whey were involved in cell organisation and biogenesis (n = 17) or in inflammatory and defence response (n = 13). SIGNIFICANCE: The proteomes of blood and milk from ewes with experimental mastitis caused by Mannheimia haemolytica and the differential proteomics in sequential samples after challenge are presented for the first time. This is the first detailed proteomics study in M. haemolytica-associated mastitis in ewes. An experimental model fully simulating natural mastitis has been used. Use of experimentally induced mastitis minimised potential variations and allowed consistency of results. The study included evaluation of changes in blood plasma and milk whey. Protein patterns have been studied, indicating with great accuracy changes that had occurred as part of the disease process and development, during the acute phase of infection. Relevant protein-protein interactions were studied. The entirety of proteomics findings has suggested that affected ewes had mounted a defence response that had been regulated by many proteins (e.g., cathelicidins, haptoglobin, serum amyloid A) and through various pathways (e.g., acute phase response, binding and transporting significant ions and molecules); these were interdependent at various points. Potential biomarkers have been indicated for use in diagnostic assays of mastitis.


Subject(s)
Mammary Glands, Animal/metabolism , Mannheimia haemolytica/physiology , Mastitis/metabolism , Pasteurellaceae Infections/metabolism , Proteome/analysis , Sheep Diseases/metabolism , Animals , Biomarkers/analysis , Biomarkers/blood , Biomarkers/metabolism , Blood Proteins/analysis , Blood Proteins/metabolism , Disease Models, Animal , Female , Lactation/metabolism , Mammary Glands, Animal/microbiology , Mammary Glands, Animal/pathology , Mastitis/blood , Mastitis/pathology , Mastitis/veterinary , Milk/chemistry , Milk/metabolism , Milk Proteins/analysis , Milk Proteins/metabolism , Pasteurellaceae Infections/blood , Pasteurellaceae Infections/pathology , Pasteurellaceae Infections/veterinary , Proteome/metabolism , Proteomics , Sheep , Sheep Diseases/blood , Sheep Diseases/pathology
19.
Sci Rep ; 8(1): 16103, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382186

ABSTRACT

Drosophila chorion represents a remarkable model system for the in vivo study of complex extracellular-matrix architectures. For its organization and structure, s38 protein is considered as a component of major importance, since it is synthesized and secreted during early choriogenesis. However, there is no evidence that proves its essential, or redundant, role in chorion biogenesis. Hence, we show that targeted downregulation of s38 protein, specifically in the ovarian follicle-cell compartment, via employment of an RNAi-mediated strategy, causes generation of diverse dysmorphic phenotypes, regarding eggshell's regionally and radially specialized structures. Downregulation of s38 protein severely impairs fly's fertility and is unable to be compensated by the s36 homologous family member, thus unveiling s38 protein's essential contribution to chorion's assembly and function. Altogether, s38 acts as a key skeletal protein being critically implicated in the patterning establishment of a highly structured tripartite endochorion. Furthermore, it seems that s38 loss may sensitize choriogenesis to stochastic variation in its coordination and timing.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Egg Proteins/metabolism , Egg Shell/metabolism , Morphogenesis , Animals , Cell Compartmentation , Chorion/metabolism , Down-Regulation , Drosophila melanogaster/genetics , Drosophila melanogaster/ultrastructure , Egg Shell/cytology , Egg Shell/ultrastructure , Female , Fertility , Gene Expression Regulation , Ovarian Follicle/cytology , Ovarian Follicle/metabolism , Ovum/metabolism , RNA Interference
20.
Data Brief ; 19: 2037-2040, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30229078

ABSTRACT

Over the last years, there has been tremendous debate regarding the identity of feta cheese and under which terms such food with historical ties to ancient Greece can be discriminated among others, based on its unique traits and characteristics. This analysis sets the foundation towards a much anticipated control procedure, by deciphering for the first time the core elements of this food; its proteins. In this initial report, we amassed representative feta cheese samples/types from parts of Greece entitled to produce this "protected designation of origin" (p.d.o) cheese type and analyzed in full their protein content by employing exhaustive deep-proteome analyses. Several groups of proteins were identified, implicated in diverse functions as well as proteins under multiple abundances, while the final feta cheese protein list was set to include solely core-proteins identified in every analyzed sample. Through this data article we report, for the first time, the complete protein content of feta cheese, consisting of 489 proteins, thus setting the foundation towards developing a method for identification of the original Greek product.

SELECTION OF CITATIONS
SEARCH DETAIL
...