Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Int J Phytoremediation ; 23(8): 846-856, 2021.
Article in English | MEDLINE | ID: mdl-33397125

ABSTRACT

Improved knowledge of the ecology of contaminant-degrading organisms is paramount for effective assessment and remediation of aromatic hydrocarbon-impacted sites. DNA stable isotope probing was used herein to identify autochthonous degraders in rhizosphere soil from a hybrid poplar phytoremediation system incubated under semi-field-simulated conditions. High-throughput sequencing of bacterial 16S rRNA and fungal internal transcribed spacer (ITS) rRNA genes in metagenomic samples separated according to nucleic acid buoyant density was used to identify putative toluene degraders. Degrader bacteria were found mainly within the Actinobacteria and Proteobacteria phyla and classified predominantly as Cupriavidus, Rhodococcus, Luteimonas, Burkholderiaceae, Azoarcus, Cellulomonadaceae, and Pseudomonas organisms. Purpureocillium lilacinum and Mortierella alpina fungi were also found to assimilate toluene, while several strains of the fungal poplar endophyte Mortierella elongatus were indirectly implicated as potential degraders. Finally, PICRUSt2 predictive taxonomic functional modeling of 16S rRNA genes was performed to validate successful isolation of stable isotope-labeled DNA in density-resolved samples. Four unique sequences, classified within the Bdellovibrionaceae, Intrasporangiaceae, or Chitinophagaceae families, or within the Sphingobacteriales order were absent from PICRUSt2-generated models and represent potentially novel putative toluene-degrading species. This study illustrates the power of combining stable isotope amendment with advanced metagenomic and bioinformatic techniques to link biodegradation activity with unisolated microorganisms. Novelty statement: This study used emerging molecular biological techniques to identify known and new organisms implicated in aromatic hydrocarbon biodegradation from a field-scale phytoremediation system, including organisms with phyto-specific relevance and having potential for downstream applications (amendment or monitoring) in future and existing systems. Additional novelty in this study comes from the use of taxonomic functional modeling approaches for validation of stable isotope probing techniques. This study provides a basis for expanding existing reference databases of known aromatic hydrocarbon degraders from field-applicable sources and offers technological improvements for future site assessment and management purposes.


Subject(s)
Rhizosphere , Soil , Biodegradation, Environmental , Fungi/genetics , Hypocreales , Isotopes , Mortierella , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Toluene
3.
Biophys J ; 118(3): 586-599, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31952801

ABSTRACT

The coordination of lipid messenger signaling with cytoskeletal regulation is central to many organelle-specific regulatory processes. This coupling often depends on the function of multidomain scaffolds that orchestrate transient interactions among multiple signaling intermediates and regulatory proteins on organelles. The number of possible scaffold interaction partners and the ability for these interactions to occur at different timescales makes investigations of scaffold functions challenging. This work employs live cell imaging to probe how the multidomain scaffold IQ motif containing GTPase activating protein 1 (IQGAP1) coordinates the activities of proteins affecting local actin polymerization, membrane processing, and phosphoinositide signaling. Using endosomes that are confined by a local actin network as a model system, we demonstrate that IQGAP1 can transition between different actin and endosomal membrane tethered states. Fast scaffold binding/disassociation transitions are shown to be driven by interactions between C-terminal scaffold domains and Rho GTPases at the membrane. Fluctuations in these binding modes are linked to negative regulation of actin polymerization. Although this control governs core elements of IQGAP1 dynamics, actin binding by the N-terminal calponin homology domain of the scaffold is shown to help the scaffold track the temporal development of endosome membrane markers, implying actin associations bolster membrane and actin coordination. Importantly, these effects are not easily distilled purely through standard (static) co-localization analyses or traditional pathway perturbations methods and were resolved by performing dynamic correlation and multiple regression analyses of IQGAP1 scaffold mutants. Using these capabilities with pharmacological inhibition, we provide evidence that membrane tethering is dependent on the activities of the lipid kinase phosphoinositide 3-kinase in addition to the Rho GTPases Rac1 and Cdc42. Overall, these methods and results point to a scaffold tethering mechanism that allows IQGAP1 to help control the amplitude of phosphoinositide lipid messenger signaling by coordinating signaling intermediate activities with the development and disassembly of local actin cytoskeletal networks.


Subject(s)
Actins , GTP Phosphohydrolases , ras GTPase-Activating Proteins , Humans , Lipids , Phosphatidylinositol 3-Kinases
4.
Sci Total Environ ; 707: 135890, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31865073

ABSTRACT

This field study evaluated the efficacy of a mature hybrid poplar phytoremediation system for the remediation of toluene in a fractured bedrock aquifer site. Phytoextraction activity of the trees and the ecology and biodegradation potential of root-colonizing bacteria that ultimately influence how much toluene is transported from the roots and phytoextracted to the aboveground point of measurement were explored. Peak-season toluene mass removal rates ranging from 313 to 743 µg/day were quantified using passive in planta contaminant sampling techniques and continuous heat dissipation transpiration measurements in tree stems. Root bacterial microbiome structure and biodegradation potential were evaluated via high-throughput sequencing and predictive metagenomic functional modelling of bacterial 16S rRNA genes in roots. Poplar roots were colonized mostly by Proteobacteria, Actinobacteria, and Bacteroidetes. Distinct, more uniform communities were observed in roots associated with trees planted in the toluene source area compared to other areas, with differences apparent at lower taxonomic levels. Significant enrichment of Streptomyces in roots was observed in the source area, implicating that genus as a potentially important poplar endophyte at toluene-impacted sites. Moreover, significantly greater aerobic toluene biodegradation capacity was predicted in these roots compared to other areas using taxonomic functional modelling. Together with passive sampling, the molecular results provided supporting evidence of biodegradation activity in the source area and contextualized the detected phytoextraction patterns. These results support the application of phytoremediation systems for aromatic hydrocarbons in environments with complex geology and demonstrate field-validated monitoring techniques to assess phytoextraction and biodegradation in these systems.


Subject(s)
Biodegradation, Environmental , Groundwater , RNA, Ribosomal, 16S , Toluene , Water Pollutants, Chemical
5.
Sci Rep ; 9(1): 14382, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31591409

ABSTRACT

Next-generation DNA sequencing is currently limited by an inability to accurately count the number of input DNA molecules. Molecular counting is particularly needed when accurate quantification is required for diagnostic purposes, such as in single gene non-invasive prenatal testing (sgNIPT) and liquid biopsy. We developed Quantitative Counting Template (QCT) molecular counting to reconstruct the number of input DNA molecules using sequencing data. We then used QCT molecular counting to develop sgNIPTs of sickle cell disease, cystic fibrosis, spinal muscular atrophy, alpha-thalassemia, and beta-thalassemia. The analytical sensitivity and specificity of sgNIPT was >98% and >99%, respectively. Validation of sgNIPTs was further performed with maternal blood samples collected during pregnancy, and sgNIPTs were 100% concordant with newborn follow-up.


Subject(s)
Base Pairing , DNA/genetics , High-Throughput Nucleotide Sequencing/methods , Noninvasive Prenatal Testing/methods , Sequence Analysis, DNA/methods , Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/genetics , Base Sequence , DNA/chemistry , Humans , Limit of Detection
6.
Water Res ; 165: 114986, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31446293

ABSTRACT

In complex hydrogeological settings little is known about the extent of temporally varying redox conditions and their effect on aromatic hydrocarbon biodegradation. This study aims to assess the impact of changing redox conditions over time on aromatic hydrocarbon biodegradation in a fractured bedrock aquifer using stable isotope methods. To that end, four snapshots of highly spatio-temporally resolved contaminant and redox sensitive species concentrations, as well as stable isotope ratio profiles, were determined over a two-years time period in summer 2016, spring 2017, fall 2017 and summer 2018 in a toluene contaminated fractured bedrock aquifer. The concentration profiles of redox sensitive species and stable isotope ratio profiles for dissolved inorganic carbon (DIC) and sulfate (δ13CDIC, δ34SSO4, δ18OSO4) revealed that the aquifer alternates between oxidising (spring 2017/summer 2018) and reducing conditions (summer 2016/fall 2017). This alternation was attributed to a stronger aquifer recharge with oxygen-rich meltwater in spring 2017/summer 2018 compared to summer 2016/fall 2017. The temporally varying redox conditions coincided with various extents of toluene biodegradation revealed by the different magnitude of heavy carbon (13C) and hydrogen (2H) isotope enrichment in toluene. This indicated that the extent of toluene biodegradation and its contribution to plume attenuation was controlled by the temporally changing redox conditions. The highest toluene biodegradation was observed in summer 2016, followed by spring 2017 and fall 2017, whereby these temporal changes in biodegradation occurred throughout the whole plume. Thus, under temporally varying recharge conditions both the core and the fringe of a contaminant plume can be replenished with terminal electron acceptors causing biodegradation in the whole plume and not only at its distal end as previously suggested by the plume fringe concept. Overall, this study highlights the importance of highly temporally resolved groundwater monitoring to capture temporally varying biodegradation rates and to accurately predict biodegradation-induced contaminant attenuation in fractured bedrock aquifers.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Oxidation-Reduction , Toluene
7.
Int J Phytoremediation ; 21(1): 60-69, 2019.
Article in English | MEDLINE | ID: mdl-30648419

ABSTRACT

Biodegradation is an important mechanism of action of phytoremediation systems, but performance evaluation is challenging. We applied metagenomic molecular approaches and compound-specific stable carbon isotope analysis to assess biodegradation of toluene in the vadose zone at an urban pilot field system where hybrid poplars were planted to remediate legacy impacts to an underlying shallow fractured bedrock aquifer. Carbon isotope ratios were compared spatio-temporally between toluene dissolved in groundwater and in the vapor phase. Enrichment of 13C from toluene in the vapor phase compared to groundwater provided evidence for biodegradation in the vadose zone. Total bacterial abundance (16S rRNA) and abundance and expression of degradation genes were determined in rhizosphere soil (DNA and RNA) and roots (DNA) using quantitative PCR. Relative abundances of degraders in the rhizosphere were on average higher at greater depths, except for enrichment of PHE-encoding communities that more strongly followed patterns of toluene concentrations detected. Quantification of RMO and PHE gene transcripts supported observations of active aerobic toluene degradation. Finally, spatially-variable numbers of toluene degraders were detected in poplar roots. We present multiple lines of evidence for biodegradation in the vadose zone at this site, contributing to our understanding of mechanisms of action of the phytoremediation system.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Carbon , Carbon Isotopes , Metagenomics , RNA, Ribosomal, 16S , Toluene/analysis
8.
Biol Open ; 6(6): 785-799, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28455356

ABSTRACT

IQGAP1 is a large, multi-domain scaffold that helps orchestrate cell signaling and cytoskeletal mechanics by controlling interactions among a spectrum of receptors, signaling intermediates, and cytoskeletal proteins. While this coordination is known to impact cell morphology, motility, cell adhesion, and vesicular traffic, among other functions, the spatiotemporal properties and regulatory mechanisms of IQGAP1 have not been fully resolved. Herein, we describe a series of super-resolution and live-cell imaging analyses that identified a role for IQGAP1 in the regulation of an actin cytoskeletal shell surrounding a novel membranous compartment that localizes selectively to the basal cortex of polarized epithelial cells (MCF-10A). We also show that IQGAP1 appears to both stabilize the actin coating and constrain its growth. Loss of compartmental IQGAP1 initiates a disassembly mechanism involving rapid and unconstrained actin polymerization around the compartment and dispersal of its vesicle contents. Together, these findings suggest IQGAP1 achieves this control by harnessing both stabilizing and antagonistic interactions with actin. They also demonstrate the utility of these compartments for image-based investigations of the spatial and temporal dynamics of IQGAP1 within endosome-specific actin networks.

9.
PLoS One ; 12(3): e0167130, 2017.
Article in English | MEDLINE | ID: mdl-28248967

ABSTRACT

We evaluated performance characteristics of a laboratory-developed, non-invasive prenatal screening (NIPS) assay for fetal aneuploidies. This assay employs massively parallel shotgun sequencing with full automation. GC sequencing bias correction and statistical smoothing were performed to enhance discrimination of affected and unaffected pregnancies. Maternal plasma samples from pregnancies with known aneuploidy status were used for assay development, verification, and validation. Assay verification studies using 2,085 known samples (1873 unaffected, 69 trisomy 21, 20 trisomy 18, 17 trisomy 13) demonstrated complete discrimination between autosomal trisomy (Z scores >8) and unaffected (Z scores <4) singleton pregnancies. A validation study using 552 known samples (21 trisomy 21, 10 trisomy 18, 1 trisomy 13) confirmed complete discrimination. Twin pregnancies showed similar results. Follow-up of abnormal results from the first 10,000 clinical samples demonstrated PPVs of 98% (41/42) for trisomy 21, 92% (23/25) for trisomy 18, and 69% (9/13) for trisomy 13. Adjustment for causes of false-positive results identified during clinical testing (eg, maternal duplications) improved PPVs to 100% for trisomy 21 and 96% for trisomy 18. This NIPS test demonstrates excellent discrimination between trisomic and unaffected pregnancies. The PPVs obtained in initial clinical testing are substantially higher than previously reported NIPS methods.


Subject(s)
Chromosomes, Human/genetics , Mass Screening/methods , Prenatal Diagnosis/methods , Trisomy/diagnosis , Trisomy/genetics , False Positive Reactions , Female , Follow-Up Studies , Humans , Male , Pregnancy
10.
Neuromuscul Disord ; 25(12): 945-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26420234

ABSTRACT

We compare molecular combing to Southern blot in the analysis of the facioscapulohumeral muscular dystrophy type 1 locus (FSHD1) on chromosome 4q35-qter (chr 4q) in genomic DNA specimens sent to a clinical laboratory for FSHD testing. A de-identified set of 87 genomic DNA specimens determined by Southern blot as normal (n = 71), abnormal with D4Z4 macrosatellite repeat array contractions (n = 7), indeterminate (n = 6), borderline (n = 2), or mosaic (n = 1) was independently re-analyzed by molecular combing in a blinded fashion. The molecular combing results were identical to the Southern blot results in 75 (86%) of cases. All contractions (n = 7) and mosaics (n = 1) detected by Southern blot were confirmed by molecular combing. Of the 71 samples with normal Southern blot results, 67 (94%) had concordant molecular combing results. The four discrepancies were either mosaic (n = 2), rearranged (n = 1), or borderline by molecular combing (n = 1). All indeterminate Southern blot results (n = 6) were resolved by molecular combing as either normal (n = 4), borderline (n = 1), or rearranged (n = 1). The two borderline Southern blot results showed a D4Z4 contraction on the chr 4qA allele and a normal result by molecular combing. Molecular combing overcomes a number of technical limitations of Southern blot by providing direct visualization of D4Z4 macrosatellite repeat arrays on specific chr 4q and chr 10q alleles and more precise D4Z4 repeat sizing. This study suggests that molecular combing has superior analytical validity compared to Southern blot for determining D4Z4 contraction size, detecting mosaicism, and resolving borderline and indeterminate Southern blot results. Further studies are needed to establish the clinical validity and diagnostic accuracy of these findings in FSHD.


Subject(s)
Blotting, Southern/methods , Chromosomes, Human, Pair 4 , Molecular Diagnostic Techniques/methods , Muscular Dystrophy, Facioscapulohumeral/genetics , Sequence Analysis, DNA/methods , Humans
11.
Methods Cell Biol ; 128: 69-82, 2015.
Article in English | MEDLINE | ID: mdl-25997343

ABSTRACT

Examining the collective mechanical behaviors of interacting cytoskeletal motors has become increasingly important to dissecting the complex and multifaceted mechanisms that regulate the transport and trafficking of materials in cells. Although studying these processes in living cells has been challenging, the development of new Synthetic Biology techniques has opened unique opportunities to both manipulate and probe how these motors function in groups as they navigate the native cytoskeleton. Here, we describe an approach to engineer mammalian cells for a new class of inducible cargo motility assays that utilize drug-dependent protein dimerization switches to regulate motor-cargo coupling and transport. Our adaptations provide genetic-level control over the densities of motor proteins coupled to, as well as the sizes of endogenous vesicular cargos in these assays. By allowing the examination of transport responses to changes in motor density and cargo size-dependent viscous drag force, such control can enable quantitative comparisons of mechanistic distinctions between the collective behaviors of different types of processive cytoskeletal motors.


Subject(s)
Actin Cytoskeleton/metabolism , Biological Transport/physiology , Cell Movement/physiology , Microtubules/metabolism , Animals , Bacterial Proteins/genetics , COS Cells , Cell Line , Chlorocebus aethiops , Dyneins/metabolism , Kinesins/metabolism , Luminescent Proteins/genetics , Membrane Proteins/metabolism , Myosins/metabolism , Protein Multimerization/drug effects , Sirolimus/metabolism , Tacrolimus Binding Proteins/metabolism
12.
13.
Mar Pollut Bull ; 83(1): 138-47, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24768259

ABSTRACT

Modeling oil biodegradation is an important step in predicting the long term fate of oil on beaches. Unfortunately, existing models do not account mechanistically for environmental factors, such as pore water nutrient concentration, affecting oil biodegradation, rather in an empirical way. We present herein a numerical model, BIOB, to simulate the biodegradation of insoluble attached hydrocarbon. The model was used to simulate an experimental oil spill on a sand beach. The biodegradation kinetic parameters were estimated by fitting the model to the experimental data of alkanes and aromatics. It was found that parameter values are comparable to their counterparts for the biodegradation of dissolved organic matter. The biodegradation of aromatics was highly affected by the decay of aromatic biomass, probably due to its low growth rate. Numerical simulations revealed that the biodegradation rate increases by 3-4 folds when the nutrient concentration is increased from 0.2 to 2.0 mg N/L.


Subject(s)
Hydrocarbons/metabolism , Models, Biological , Petroleum Pollution , Bays , Biodegradation, Environmental , Biomass , Delaware , Kinetics , Solubility
14.
Proc Natl Acad Sci U S A ; 111(3): E334-43, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24402168

ABSTRACT

Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.


Subject(s)
Kinesins/metabolism , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Animals , Bacterial Proteins/chemistry , Biological Transport , COS Cells , Chlorocebus aethiops , Cytoskeleton/metabolism , Doxycycline/chemistry , Elasticity , Kinesins/chemistry , Luminescent Proteins/chemistry , Lysosomes/metabolism , Microtubules/metabolism , Peroxisomes/metabolism , Rheology , Synthetic Biology , Viscosity
16.
Int J Phytoremediation ; 15(3): 232-44, 2013.
Article in English | MEDLINE | ID: mdl-23488009

ABSTRACT

Poplar and willow tree stands were installed in 2003 at a site in Raleigh, North Carolina containing total petroleum hydrocarbon - contaminated groundwater. The objective was groundwater uptake and plume control. The water table was 5 to 6 m below ground surface (bgs) and therefore methods were used to encourage deep root development. Growth rates, rooting depth and sap flow were measured for trees in Plot A located in the center of the plume and in Plot B peripheral to the plume. The trees were initially sub-irrigated with vertically installed drip-lines and by 2005 had roots 4 to 5 m bgs. Water balance calculations suggested groundwater uptake. In 2007, the average sap flow was higher for Plot B (approximately 59 L per day per tree) than for Plot A (approximately 23 L per day per tree), probably as a result of TPH-induced stress in Plot A. Nevertheless, the estimated rate of groundwater uptake for Plot A was sufficient, relative to the calculated rate of groundwater flux beneath the stand, that a high level of plume control was achieved based on MODFLOW modeling results. Down-gradient groundwater monitoring wells installed in late 2011 should provide quantitative data for plume control.


Subject(s)
Groundwater/chemistry , Plant Roots/physiology , Populus/physiology , Salix/physiology , Water Pollutants, Chemical/metabolism , Water Purification/methods , Agricultural Irrigation , Biodegradation, Environmental , Chimera , Hydrocarbons/metabolism , Models, Biological , North Carolina , Petroleum/metabolism , Petroleum Pollution/prevention & control , Plant Roots/anatomy & histology , Plant Roots/growth & development , Plant Transpiration/physiology , Populus/anatomy & histology , Populus/growth & development , Salix/anatomy & histology , Salix/growth & development , Seasons , Soil , Trees
17.
Microbes Infect ; 14(6): 509-16, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22222846

ABSTRACT

Enhancing the virulence trait of a specific bacterium in an animal model is often performed prior to the use of the strain for ex vivo human studies, such as reactivity with complement and antibody, or with phagocytic cells. For example, in Streptococcus pneumoniae mouse passage is used to enhance capsule production. While investigating an unusual serum-resistant unencapsulated Haemophilus influenzae (R2866), we found that animal passage yielded an isolate (R3392) which had decreased resistance to human serum, but increased virulence in Chang conjunctival cell monolayers, but with less invasion and transcytosis of polar H292 cells. We examined 90 colonies recovered from three infant rats for phase variants of LPS biosynthetic genes. In 88 colonies lgtC was OFF due to tetrameric repeat mediated slipped-strand mispairing at the time of DNA replication, while there was no variation in lic1A, lic2A, lic3A, lexA and oaf A. With lgtC OFF the LPS lacks Galα1-4ßGal, an epitope mimicking the human p(k) blood group, and molecular mimicry is lost. Selection for strain susceptible to NHS in the infant rat was not antibody mediated. We conclude that the passage of pathogens virulent in humans and animals may select for phenotypes only relevant for the animal species used.


Subject(s)
Blood Bactericidal Activity , Haemophilus Infections/microbiology , Haemophilus influenzae/classification , Haemophilus influenzae/pathogenicity , Serial Passage , Adult , Animals , Animals, Newborn , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Line , Conjunctiva/microbiology , Female , Haemophilus influenzae/physiology , Humans , Inhibitory Concentration 50 , Lipopolysaccharides/biosynthesis , Microbial Viability , Phenotype , Pregnancy , Rats , Virulence
18.
RNA ; 18(2): 222-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22194310

ABSTRACT

A useful method for studying the function of the mammalian RNA polymerase II takes advantage of the extreme sensitivity of its largest subunit, Rpb1, to α-amanitin. Mutations of interest are introduced into an α-amanitin-resistant version of Rpb1, which is then expressed ectopically in cells. The phenotypes of these cells are then examined after inhibiting the endogenous wild-type polymerase with α-amanitin. Here, we show that cells that are enabled to grow in α-amanitin by expression of an α-amanitin-resistant Rpb1 exhibit changes in cell physiology that can lead to misleading experimental outcomes. The changes we have characterized include the accelerated degradation of some proteins, such as DSIF160, and the reduced rate of synthesis of others. In one series of experiments, we examined an α-amanitin-resistant construct, with a mutant C-terminal domain (CTD), that was unable to direct poly(A)-dependent transcription termination in cells growing in α-amanitin. The potential interpretation that the termination defect in this construct is due to the mutation in the CTD was rejected when the construct was found to be termination-competent in cells grown in the absence of α-amanitin. Instead, it appears that certain termination factors become limiting when the cells are grown in α-amanitin, presumably due to the α-amanitin-induced degradation we have characterized and/or to the inadequate transcription of certain genes by the α-amanitin-resistant Rpb1-containing polymerase.


Subject(s)
Alpha-Amanitin/pharmacology , Mutation , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Animals , COS Cells , Cell Line, Transformed , Chlorocebus aethiops , Phenotype , Proteolysis/drug effects , Transcription, Genetic
19.
Chemosphere ; 81(9): 1104-10, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20875664

ABSTRACT

The aerobic biodegradability of iso-butanol, a new biofuel, and its impact on benzene, toluene, ethylbenzene and xylenes (BTEX) degradation was investigated in aerobic microcosms consisting of groundwater and sediment from a California site with a history of gasoline contamination. To the best of our knowledge this is the first study directly examining the effects of iso-butanol on BTEX degradation. Microcosms that received either low (68 µM) or high (3400 µM) concentrations of iso-butanol showed complete biodegradation of iso-butanol within 7 and 23 d, respectively, of incubation at 15°C under aerobic conditions. A maximum utilization rate coefficient of 2.3±0.1×10⁻7 µmol cell⁻¹ h⁻¹ and a half saturation constant of 610±54 µM were regressed from the iso-butanol data. Iso-butanol biodegradation resulted in transient formation of the degradation intermediate products iso-butylaldehyde and iso-butyric acid, and both compounds were subsequently degraded within the timeframe of the experiments. Ethanol was biodegraded more slowly than iso-butanol. Ethanol also exhibited greater adverse impacts on BTEX biodegradation than iso-butanol. Results of the study suggest that iso-butanol added to fuels will be readily biodegraded in the environment under aerobic conditions without the accumulation of major intermediate products (iso-butylaldehyde and iso-butyric acid), and that it will pose less impacts on BTEX biodegradation than ethanol.


Subject(s)
Benzene Derivatives/metabolism , Benzene/metabolism , Butanols/metabolism , Ethanol/metabolism , Water Pollutants, Chemical/metabolism , Aerobiosis , Bacteria, Aerobic/metabolism , Benzene/analysis , Benzene/chemistry , Benzene Derivatives/analysis , Benzene Derivatives/chemistry , Biodegradation, Environmental , Butanols/analysis , Butanols/chemistry , Ethanol/analysis , Ethanol/chemistry , Fresh Water/chemistry , Geologic Sediments/chemistry , Toluene/analysis , Toluene/chemistry , Toluene/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Xylenes/analysis , Xylenes/chemistry , Xylenes/metabolism
20.
Chemosphere ; 81(9): 1111-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20875669

ABSTRACT

Biologically produced iso-butanol is currently being considered as an additive in gasoline blends. To evaluate its potential environmental fate in groundwater aquifers, a laboratory microcosm study was performed to evaluate iso-butanol biodegradation under various anaerobic conditions (nitrate-reducing, sulfate-reducing and methanogenic). The impacts of iso-butanol on benzene, toluene, ethylbenzene, and total xylenes (BTEX) biodegradation were also assessed, and microcosms prepared using ethanol instead of iso-butanol were evaluated to provide a basis for comparison. Iso-butanol was biodegraded under all conditions studied, with an observed apparent first-order rate constant ranging from approximately 0.2 d⁻¹ (nitrate-reducing) to approximately 0.02 d⁻¹ (sulfate-reducing). Iso-butanol typically was degraded in a time frame that was shorter than or similar to BTEX compounds. Iso-butyric acid and trace levels of iso-butylaldehyde were identified as transient intermediates, and both of these compounds were subsequently degraded within the time frame of the experiments. Iso-butanol and ethanol were biodegraded in similar time frames under methanogenic conditions. Under sulfate-reducing conditions, iso-butanol biodegradation initially proceeded more slowly than ethanol, and then increased to a rate greater than that observed for ethanol; this observation likely was due to the growth of iso-butanol degrading bacteria. Iso-butanol generally exhibited less adverse impacts on BTEX biodegradations than ethanol under the anaerobic conditions studied. In some cases, addition of iso-butanol enhanced the rate of TEX biodegradation.


Subject(s)
Benzene Derivatives/metabolism , Benzene/metabolism , Butanols/metabolism , Ethanol/metabolism , Water Pollutants, Chemical/metabolism , Bacteria, Anaerobic/metabolism , Benzene/analysis , Benzene/chemistry , Benzene Derivatives/analysis , Benzene Derivatives/chemistry , Biodegradation, Environmental , Butanols/analysis , Butanols/chemistry , Ethanol/analysis , Ethanol/chemistry , Fresh Water/chemistry , Geologic Sediments/chemistry , Toluene/analysis , Toluene/chemistry , Toluene/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Xylenes/analysis , Xylenes/chemistry , Xylenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...