Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol Methods ; 233: 15-22, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26996538

ABSTRACT

A side-polished fiber optic surface plasmon resonance (SPR) sensor was fabricated to expose the core surface and then deposited with a 40 nm thin gold film for the near surface sensing of effective refractive index changes with surface concentration or thickness of captured avian influenza virus subtype H6. The detection surface of the SPR optical fiber sensor was prepared through the plasma modification method for binding a self-assembled monolayer of isopropanol chemically on the gold surface of the optical fiber. Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide/N-hydroxysuccinimide was activated to enable EB2-B3 monoclonal antibodies to capture A/chicken/Taiwan/2838V/00 (H6N1) through a flow injection system. The detection limit of the fabricated optical fiber sensor for A/chicken/Taiwan/2838V/00 was 5.14 × 10(5) EID50/0.1 mL, and the response time was 10 min on average. Moreover, the fiber optic sensor has the advantages of a compact size and low cost, thus rendering it suitable for online and remote sensing. The results indicated that the optical fiber sensor can be used for epidemiological surveillance and diagnosing of avian influenza subtype H6 rapidly.


Subject(s)
Biosensing Techniques , Influenza A virus/classification , Optical Fibers , Surface Plasmon Resonance , Animals , Antigens, Viral , Birds , Enzyme-Linked Immunosorbent Assay , Influenza A virus/genetics , Influenza A virus/immunology , Influenza in Birds/diagnosis , Influenza in Birds/virology , Reverse Transcriptase Polymerase Chain Reaction , Serogroup
2.
Sensors (Basel) ; 13(7): 9513-21, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23881144

ABSTRACT

An optical fiber sensor based on surface plasmon resonance (SPR) is proposed for monitoring the thickness of deposited nano-thin films. A side-polished multimode SPR optical fiber sensor with an 850 nm-LD is used as the transducing element for real-time monitoring of the deposited TiO2 thin films. The SPR optical fiber sensor was installed in the TiO2 sputtering system in order to measure the thickness of the deposited sample during TiO2 deposition. The SPR response declined in real-time in relation to the growth of the thickness of the TiO2 thin film. Our results show the same trend of the SPR response in real-time and in spectra taken before and after deposition. The SPR transmitted intensity changes by approximately 18.76% corresponding to 50 nm of deposited TiO2 thin film. We have shown that optical fiber sensors utilizing SPR have the potential for real-time monitoring of the SPR technology of nanometer film thickness. The compact size of the SPR fiber sensor enables it to be positioned inside the deposition chamber, and it could thus measure the film thickness directly in real-time. This technology also has potential application for monitoring the deposition of other materials. Moreover, in-situ real-time SPR optical fiber sensor technology is in inexpensive, disposable technique that has anti-interference properties, and the potential to enable on-line monitoring and monitoring of organic coatings.


Subject(s)
Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Optical Fibers , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods , Titanium/chemistry , Equipment Design , Titanium/analysis
3.
J Nanosci Nanotechnol ; 12(2): 1280-3, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22629938

ABSTRACT

In this study, a new room temperature type gas sensor device based on plasma deposition of tetramethyltin (TMT) and O2 organically hybridized film followed by post treatment on the deposited film was developed for improving CO gas sensitivity and distinguishing from methane, butane, and carbon monoxide gases in the test environment. Plasma deposited SnOx thin film was first produced from TMT and O2 gas mixtures at room temperature, and then post treatments on the SnOx thin films were carried out by either spin coating with poly ethylene glycol (PEG) or surface grafting with p-styrenesulfonic acid sodium salt (Nass). It was found that the gas sensor spin coating post treated with PEG exhibits linear response to CO gas with the sensitivity not affected by methane and butane gases. For CO concentrations ranging from 30 to 650 ppm, steep change in the sensor resistance can be detected without warming up the sensor.

4.
Appl Opt ; 46(5): 800-6, 2007 Feb 10.
Article in English | MEDLINE | ID: mdl-17279169

ABSTRACT

A side-polished multimode fiber sensor based on surface plasmon resonance (SPR) as the transducing element with a halogen light source is proposed. The SPR fiber sensor is side polished until half the core is closed and coated with a 37 nm gold thin film by dc sputtering. The SPR curve on the optical spectrum is described by an optical spectrum analyzer and can sense a range of widths in wavelengths of SPR effects. The measurement system using the halogen light source is constructed for several real-time detections that are carried out for the measurement of the index liquid detections for the sensitivity analysis. The sensing fiber is demonstrated with a series of refractive index (RI) liquids and set for several experiments, including the stability, repeatability, and resolution calibration. The results for the halogen light source with the resolution of the measurement based on wavelength interrogation were 3 x 10(-6) refractive index units (RIUs). The SPR dip shifted in wavelength is used as a measure of the RI change at a surface, and this RI change varies directly with the number of biomolecules at the surface. The SPR dip shift in wavelength, which was hybridized at 0.1 microM of the target DNA to the probe DNA, was 8.66 nm. The all-fiber multimode SPR sensor, which has the advantages of being low cost, being disposable, having high stability and linearity, being free of labeling, and having potential for real-time detection, permit the sensor and system to be used in biochemical sensing and environmental monitoring.


Subject(s)
Biosensing Techniques , Halogens/chemistry , Optics and Photonics , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods , Calibration , DNA/chemistry , Equipment Design , Fiber Optic Technology , Gold/chemistry , Light , Microscopy, Atomic Force , Nucleic Acid Hybridization , Refractometry , Time Factors
5.
Opt Lett ; 30(17): 2209-11, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16190420

ABSTRACT

A novel analysis based on surface plasmon resonance (SPR) with a side-polished multimode fiber and a white-light (halogen light) source is presented. The sensing system is a multimode optical fiber in which half of the core has been polished away and a 40 nm gold layer is deposited on to the polished surface by dc sputter. The SPR dip in the optical spectrum is investigated with an optical spectrum analyzer (OSA). In our SPR fiber sensor, the use of liquids with different refractive indices leads to a shift in the spectral dip in the SPR curve. The cross point (CP) of the two SPR spectra obtained from the refractive-index liquid and the deionized water measurements was observed with the OSA. The CP is shifted sensitively in wavelength from 630 to 1300 nm relative to a change in the refractive index of the liquid from 1.34 to 1.46. High sensitivities of 1.9 x 10(-6) refractive-index units (RIUs) in the range of the refractive index of the liquid from 1.40 to 1.44 of 5.7 x 10(-7) RIUs above the value of 1.44 are proposed and demonstrated in our novel SPR analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...