Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Biotechnol ; 319: 1-7, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32470462

ABSTRACT

Gas fermentation for the production of building block molecules and biofuels is lately gaining attention as a means to eliminate the greenhouse gases emissions. Especially CO2 capture and recycling are in focus. Thus, the biological coupling of CO2 and H2 is of high interest. Therefore, the focus of the present work was to evaluate the performances of two up-flow reactors for CO2 and H2 assimilation. Process monitoring showed that the gas-liquid H2 transfer was highly affected by reactor design. A reactor filled with Raschig rings could lift up gases utilization leading to a CH4 content of 81% at 6 h gas retention time and 8.8 L/LR.h gas recirculation rate. In contrast, limited biomethanation was achieved in the absence of Raschig rings highlighting the positive role of packing material to the performance of up-flow-reactors. Additionally, high-throughput 16S rRNA sequencing revealed that the microbial community was ultimately resided by Methanothermobacter methanogens.


Subject(s)
Bioreactors/microbiology , Carbon Cycle/physiology , Carbon Dioxide/metabolism , Hydrogen/metabolism , Anaerobiosis , Biofuels , Methane/metabolism , Methanobacteriaceae/genetics , Methanobacteriaceae/metabolism
2.
Bioresour Technol ; 234: 350-359, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28340440

ABSTRACT

Bioaugmentation with hydrolytic microbes was applied to improve the methane yield of bioreactors fed with agricultural wastes. The efficiency of Clostridium thermocellum and Melioribacter roseus to degrade lignocellulosic matter was evaluated in batch and continuously stirred tank reactors (CSTRs). Results from batch assays showed that C. thermocellum enhanced the methane yield by 34%. A similar increase was recorded in CSTR during the bioaugmentation period; however, at steady-state the effect was noticeably lower (7.5%). In contrast, the bioaugmentation with M. roseus did not promote markedly the anaerobic biodegradability, as the methane yield was increased up to 10% in batch and no effect was shown in CSTR. High-throughput 16S rRNA amplicon sequencing was used to assess the effect of bioaugmentation strategies on bacterial and archaeal populations. The microbial analysis revealed that both strains were not markedly resided into biogas microbiome. Additionally, the applied strategies did not alter significantly the microbial communities.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Bioreactors/microbiology , Lignin/metabolism , Agriculture , Anaerobiosis , Archaea/genetics , Archaea/metabolism , Bacteria/genetics , Biofuels , Hydrolysis , Methane/biosynthesis , Microbiota , RNA, Ribosomal, 16S/genetics
3.
Bioresour Technol ; 225: 246-253, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27898314

ABSTRACT

The effect of various micro-aeration strategies on the anaerobic digestion (AD) of wheat straw was thoroughly examined using a mixture of inocula, containing compost and well digested sludge from biogas plant. The aim was to determine the most efficient oxygen load, pulse repetition and treatment duration, resulting in the highest methane production. The oxygen load had the largest impact on the biodegradability of straw, among the examined variables. More specifically, a micro-aeration intensity of 10mLO2/gVS was identified as the critical threshold above which the AD performance was more susceptible to instability. The highest enhancement in biogas production was achieved by injecting 5mLO2/gVS for a consecutive 3-day treatment period, presenting a 7.2% increase compared to the untreated wheat straw. Nevertheless, the results from optimisation case study indicated a higher increase of 9% by injecting 7.3mLO2/gVS, distributed in 2 pulses during a slightly shorter treatment period (i.e. 47h).


Subject(s)
Biodegradation, Environmental , Biofuels , Bioreactors , Lignin/chemistry , Air , Sewage , Triticum/metabolism
4.
Anaerobe ; 46: 131-137, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27940246

ABSTRACT

An important challenge that has to be addressed to achieve sustainable anaerobic digestion of lignocellulosic substrates is the development of energy and cost efficient pretreatment methods. Technologies orientated to simultaneously harvest and mechanically pretreat the biomass at the field could meet these criteria as they can potentially reduce the energy losses. The objective of this study was to elucidate the effect of two full-scale harvesting machines to enhance the biogas production and subsequently, improve energy balance. The performances of Disc-mower and Excoriator were assessed on meadow and cultivated grass silages. The results showed that relatively high methane production can be achieved from meadow and cultivated grass harvested in different seasons. The findings indicated that the bioenergy production can be improved based on the selection of the appropriate harvesting technology. More specifically, Excoriator, which cuts and subsequently applies shearing forces on harvested biomass, enhanced the methane production up to 10% and the overall energy budget was improved proportionally to the driving speed increase.


Subject(s)
Anaerobiosis , Biofuels , Fermentation , Poaceae , Biodegradation, Environmental , Biotransformation , Methane/biosynthesis , Silage
5.
Bioresour Technol ; 216: 545-52, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27268439

ABSTRACT

Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank.


Subject(s)
Biofuels , Manure , Methane/biosynthesis , Sodium Hydroxide/chemistry , Waste Disposal, Fluid/methods , Animals , Catalysis , Cattle
6.
Bioresour Technol ; 182: 329-335, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25710572

ABSTRACT

As the biogas sector is rapidly expanding, there is an increasing need in finding new alternative feedstock to biogas plants. Meadow grass can be a suitable co-substrate and if ensiled it can be supplied to biogas plants continuously throughout the year. Nevertheless, this substrate is quite recalcitrant and therefore efficient pretreatment is needed to permit easy access of microbes to the degradable components. In this study, different mechanical pretreatment methods were applied on ensiled meadow grass to investigate their effect on biomass biodegradability. All the tested pretreatments increased the methane productivity and the increase ranged from 8% to 25%. The best mechanical pretreatment was the usage of two coarse mesh grating plates. Additionally, simple analytical methods were conducted to investigate the possibility of rapidly determining the methane yield of meadow grass. Among the methods, electrical conductivity test showed the most promising calibration statistics (R(2)=0.68).


Subject(s)
Biofuels , Biotechnology/methods , Methane/biosynthesis , Poaceae/metabolism , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Calibration , Electric Conductivity , Grassland , Hydrolysis , Microscopy, Electron, Scanning , Poaceae/chemistry
7.
Bioresour Technol ; 153: 198-205, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24365741

ABSTRACT

Foam control is an imperative need in biogas plants, as foaming is a major operational problem. In the present study, the effect of oils (rapeseed oil, oleic acid, and octanoic acid) and tributylphosphate on foam reduction and process performance in batch and continuous manure-based biogas reactors was investigated. The compounds were tested in dosages of 0.05%, 0.1% and 0.5% v/vfeed. The results showed that rapeseed oil was most efficient to suppress foam at the dosage of 0.05% and 0.1% v/vfeed, while octanoic acid was most efficient to suppress foam at dosage of 0.5% v/vfeed. Moreover, the addition of rapeseed oil also increased methane yield. In contrast, tributylphosphate, which was very efficient antifoam, was found to be inhibitory to the biogas process.


Subject(s)
Antifoaming Agents/pharmacology , Biofuels , Bioreactors , Manure , Animals , Batch Cell Culture Techniques , Cattle , Fatty Acids, Volatile/analysis , Hydrogen-Ion Concentration/drug effects , Methane/analysis
8.
Water Res ; 47(16): 6280-8, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23972674

ABSTRACT

A precise and efficient antifoaming control strategy in bioprocesses is a challenging task as foaming is a very complex phenomenon. Nevertheless, foam control is necessary, as foam is a major operational problem in biogas reactors. In the present study, the effect of 14 chemical compounds on foam reduction was evaluated at concentration of 0.05%, 0.1% and 0.5% v/v(sample), in raw and digested manure. Moreover, two antifoam injection methods were compared for foam reduction efficiency. Natural oils (rapeseed and sunflower oil), fatty acids (oleic, octanoic and derivative of natural fatty acids), siloxanes (polydimethylsiloxane) and ester (tributylphosphate) were found to be the most efficient compounds to suppress foam. The efficiency of antifoamers was dependant on their physicochemical properties and greatly correlated to their chemical characteristics for dissolving foam. The antifoamers were more efficient in reducing foam when added directly into the liquid phase rather than added in the headspace of the reactor.


Subject(s)
Antifoaming Agents/chemistry , Biofuels , Bioreactors , Manure/microbiology , Anaerobiosis , Bioreactors/microbiology , Fatty Acids/metabolism , Oils/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL