Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 10(11): 3888-3895, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38027247

ABSTRACT

The fundamental understanding of quantum dynamics in advanced materials requires precise characterization at the limit of spatiotemporal resolution. Ultrafast scanning tunneling microscopy is a powerful tool combining the benefits of picosecond time resolution provided by single-cycle terahertz (THz) pulses and atomic spatial resolution of a scanning tunneling microscope (STM). For the selective excitation of localized electronic states, the transient field profile must be tailored to the energetic structure of the system. Here, we present an advanced THz-STM setup combining multi-MHz repetition rates, strong THz near fields, and continuous carrier-envelope phase (CEP) control of the transient waveform. In particular, we employ frustrated total internal reflection as an efficient and cost-effective method for precise CEP control of single-cycle THz pulses with >60% field transmissivity, high pointing stability, and continuous phase shifting of up to 0.75 π in the far and near field. Efficient THz generation and dispersion management enable peak THz voltages at the tip-sample junction exceeding 20 V at 1 MHz and 1 V at 41 MHz. The system comprises two distinct THz generation arms, which facilitate individual pulse shaping and amplitude modulation. This unique feature enables the flexible implementation of various THz pump-probe schemes, thereby facilitating the study of electronic and excitonic excited-state propagation in nanostructures and low-dimensional materials systems. Scalability of the repetition rate up to 41 MHz, combined with a state-of-the-art low-temperature STM, paves the way toward the investigation of dynamical processes in atomic quantum systems at their native length and time scales.

2.
Article in English | MEDLINE | ID: mdl-23767637

ABSTRACT

Air plasma density decay in a filament produced by an intense femtosecond laser pulse in an external electric field was investigated experimentally and theoretically. It was demonstrated by means of the terahertz scattering technique that the rate of plasma decay decreases with increasing electric field. At the electric field of 7 kV/cm the lifetime of plasma with the density above 10(16) cm(-3) was prolonged from 0.5 ns to 1 ns. Numerical simulation of electron density decay and electron temperature evolution was performed, taking into consideration dissociative and three-body electron-ion recombination as well as formation of complex positive ions. The simulation showed that under the electric field the electron temperature evolves nonmonotonically and passes through a minimum due to varying contribution of electron-ion collisions to electron heating in the field. The rate of three-body electron recombination with O(2)(+) ions of 2×10(-19)(300/T(e))(9/2) cm(6)/s was found from the experimental measurements at electron temperatures in the 0.25-0.4 eV range and electron densities in the 10(15)-10(17) cm(-3) range.


Subject(s)
Electromagnetic Fields , Lasers , Models, Chemical , Models, Molecular , Plasma Gases/chemistry , Plasma Gases/radiation effects , Computer Simulation , Radiation Dosage
3.
Opt Express ; 19(7): 6829-35, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451710

ABSTRACT

Transverse plasma distribution with 10(17) cm(-3) maximum electron density and 150 µm transverse size in a plasma filament formed in air by an intense femtosecond laser pulse was measured by means of optical interferometry. Two orders of magnitude decay of the electron density within 2 ns was obtained by combined use of the interferometry and newly proposed terahertz scattering techniques. Excellent agreement was obtained between the measured plasma density evolution and theoretical calculation.


Subject(s)
Gases/chemistry , Gases/radiation effects , Interferometry/methods , Lasers , Models, Chemical , Computer Simulation , Hot Temperature , Terahertz Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...