Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 4(21): 4535-4541, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341302

ABSTRACT

The magnetic field-induced actuation of colloidal nanoparticles has enabled tremendous recent progress towards microrobots, suitable for a variety of applications including targeted drug delivery, environmental remediation, or minimally invasive surgery. Further size reduction to the nanoscale requires enhanced control of orientation and locomotion to overcome dominating viscous properties. Here, control of the coherent precession of hematite spindles via a dynamic magnetic field is demonstrated using nanoscale particles. Time-resolved small-angle scattering and optical transmission measurements reveal a clear frequency-dependent variation of orientation and rotation of an entire ensemble of non-interacting hematite nanospindles. The different motion mechanisms by nanoscale spindles in bulk dispersion resemble modes that have been observed for much larger, micron-sized elongated particles near surfaces. The dynamic rotation modes promise hematite nanospindles as a suitable model system for field-induced locomotion in nanoscale magnetic robots.

2.
Soft Matter ; 16(32): 7562-7575, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32716420

ABSTRACT

In several upcoming rheological approaches, including methods of micro- and nanorheology, the measurement geometry is of critical impact on the interpretation of the results. The relative size of the probe objects employed (as compared to the intrinsic length scales of the sample to be investigated) becomes of crucial importance, and there is increasing interest to investigate the dynamic processes and mobility in nanostructured materials. A combination of different rheological approaches based on the rotation of magnetically blocked nanoprobes is used to systematically investigate the size-dependent diffusion behavior in aqueous poly(ethylene glycol) (PEG) solutions with special attention paid to the relation of probe size to characteristic length scales within the polymer solutions. We employ two types of probe particles: nickel rods of hydrodynamic length Lh between 200 nm and 650 nm, and cobalt ferrite spheres with diameter dh between 13 nm and 23 nm, and examine the influence of particle size and shape on the nanorheological information obtained in model polymer solutions based on two related, dynamic-magnetic approaches. The results confirm that as long as the investigated solutions are not entangled, and the particles are much larger than the macromolecular correlation length, a good accordance between macroscopic and nanoscopic results, whereas a strong size-dependent response is observed in cases where the particles are of similar size or smaller than the radius of gyration Rg or the correlation length ξ of the polymer solution.

3.
Rev Sci Instrum ; 87(6): 063703, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27370455

ABSTRACT

The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 µm length) on a thin (<1 µm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity (ηAC≈50±20nT/Hz). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.

4.
Sensors (Basel) ; 16(6)2016 Jun 06.
Article in English | MEDLINE | ID: mdl-27275824

ABSTRACT

The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.


Subject(s)
Biomarkers/analysis , Biosensing Techniques/methods , Pathology, Molecular/methods , Humans , Magnetic Fields , Magnetics
5.
Nanoscale ; 7(40): 17122-30, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26426484

ABSTRACT

The response of a colloidal dispersion of Ni nanorods to an oscillating magnetic field was characterized by optical transmission measurements as well as small-angle neutron scattering (SANS) experiments using the TISANE (Time-dependent SANS experiments) technique. Exposed to a static magnetic field, the scattering intensity of the rod ensemble could be well described by the cylinder form factor using the geometrical particle parameters (length, diameter, orientation distribution) determined by transmission electronmicroscopy and magnetometry. An oscillation of the field vector resulted in a reorientation of the nanorods and a time-dependency of the scattering intensity due to the shape anisotropy of the rods. Analysis of the SANS data revealed that in the range of low frequencies the orientation distribution of the rods is comparable to the static case. With increasing frequency, the rod oscillation was gradually damped due to an increase of the viscous drag. It could be shown that despite of the increased friction in the high frequency range no observable change of the orientation distribution of the ensemble with respect to its symmetry axis occurs.

6.
Phys Chem Chem Phys ; 17(2): 1290-8, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25423114

ABSTRACT

Particle-crosslinked polymer composites and gels have recently been shown to possess novel or improved properties due to a covalent particle-matrix interaction. We employ spindle-like hematite particles as exclusive crosslinkers in poly(acrylamide) gels, and exploit their extraordinary magnetic properties for the realization of ferrohydrogels with a perpendicular orientation of the preferred magnetic and geometric axes of the particles. The angle-dependent magnetic properties of uniaxially oriented gels are investigated and interpreted with respect to particle-matrix interactions. The impact of the particle orientation on the resulting angle-dependent magnetic performance reveals the presence of two different contributions to the magnetization: a hysteretic component ascribed to immobilized particles, and a pseudo-superparamagnetic, non-hysteretic component due to residual particle mobility. Furthermore, a plastic reorientation of magnetic particles in the matrix when subjected to a transversal field component is observed.


Subject(s)
Acrylic Resins/chemistry , Hydrogels/chemistry , Magnetic Phenomena , Magnetite Nanoparticles/chemistry , Anisotropy
SELECTION OF CITATIONS
SEARCH DETAIL
...