Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 118(7): 2637-2648, 2021 07.
Article in English | MEDLINE | ID: mdl-33844269

ABSTRACT

A carbon-free energy supply is essential to sustain our future. Biophotovoltaics (BPV) provides a promising solution for hydrogen supply by directly coupling light-driven water splitting to hydrogen formation using oxygenic photoautotrophic cyanobacteria. However, BPV is currently limited by its low photon-to-current efficiency, and current experimental setups at a miniaturized scale hinder the rational investigation of the process and thus system optimization. In this article, we developed and optimized a new technical-scale (~250 ml working volume) BPV platform with defined and controllable operating parameters. Factors that interfered with reproducible and stable current output signals were identified and adapted. We found that the classical BG11 medium, used for the cultivation of cyanobacteria and also in many BPV studies, caused severe interferences in the bioelectrochemical experiments. An optimized nBG11 medium guaranteed a low and stable background current in the BPV reactor, regardless of the presence of light and/or mediators. As proof-of-principle, a very high long-term light-dependent current output (peak current of over 20 µA) was demonstrated in the new set-up over 12 days with living Synechocystis sp. PCC6803 cells and validated with appropriate controls. These results report the first reliable BPV platform generating reproducible photocurrent while still allowing quantitative investigation, rational optimization, and scale-up of BPV processes.


Subject(s)
Hydrogen/metabolism , Light , Synechocystis/growth & development , Culture Media/chemistry
2.
Front Microbiol ; 10: 866, 2019.
Article in English | MEDLINE | ID: mdl-31114551

ABSTRACT

Biophotovoltaics is a relatively new discipline in microbial fuel cell research. The basic idea is the conversion of light energy into electrical energy using photosynthetic microorganisms. The microbes will use their photosynthetic apparatus and the incoming light to split the water molecule. The generated protons and electrons are harvested using a bioelectrochemical system. The key challenge is the extraction of electrons from the microbial electron transport chains into a solid-state anode. On the cathode, a corresponding electrochemical counter reaction will consume the protons and electrons, e.g., through the oxygen reduction to water, or hydrogen formation. In this review, we are aiming to summarize the current state of the art and point out some limitations. We put a specific emphasis on cyanobacteria, as these microbes are considered future workhorses for photobiotechnology and are currently the most widely applied microbes in biophotovoltaics research. Current progress in biophotovoltaics is limited by very low current outputs of the devices while a lack of comparability and standardization of the experimental set-up hinders a systematic optimization of the systems. Nevertheless, the fundamental questions of redox homeostasis in photoautotrophs and the potential to directly harvest light energy from a highly efficient photosystem, rather than through oxidation of inefficiently produced biomass are highly relevant aspects of biophotovoltaics.

3.
Adv Biochem Eng Biotechnol ; 167: 361-393, 2019.
Article in English | MEDLINE | ID: mdl-29224082

ABSTRACT

Abundant solar energy can be a sustainable source of energy. This chapter highlights recent advancements, challenges, and future scenarios in bioartificial photosynthesis, which is a new subset of bioelectrochemical systems (BESs) and technologies. BES technologies exploit the catalytic interactions between biological moieties and electrodes. At the nexus of BES and photovoltaics, this review focuses on light-harvesting technologies based on bioartificial photosynthesis. Such technologies are promising because electrical energy is generated from sunlight and water without the need for additional organic feedstock. This review focuses on photosynthetic electron generation and transfer and compares the current status of bioartificial photosynthesis with other artificial systems that mimic the chemistry of photosynthetic energy transformation.The fundamental principles and the operation of functional units of bioartificial photosynthesis are addressed. Selected photobioelectrochemical systems employed to obtain light-driven electric currents from photosynthetic organisms are presented. The achievable current output and theoretical maxima are revisited by conceptualizing operational and process window techniques. Factors affecting overall photocurrent efficiency, performance limitations, and scaleup bottlenecks are highlighted in view of enhancing the energy conversion efficiency of photobioelectrochemical systems. To finish, the challenges associated with bioartificial photosynthetic technologies are outlined. Graphical Abstract Operational window for (bio-)artificial photosynthesis. Green circle in the upper right corner: development objective for research and engineering efforts.


Subject(s)
Electrophysiological Phenomena , Photosynthesis , Solar Energy , Sunlight , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...