Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 78(5): 326-332, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38822776

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for in situ/operando tracking of catalytic reactions that involve paramagnetic species either as a catalyst (e.g. transition metal ions or defects), reaction intermediates (radicals) or poisoning agents such as coke. This article provides a summary of recent experimental examples and developments in resonator design as well as detection schemes that were carried out in our group. Opportunities for applying this technique are illustrated by examples, including studies of transition metal exchanged zeolites and metal-free zeolites as well as metal oxide catalysts. The inherent limitations of EPR applied at high temperatures are discussed, as well as strategies in reducing or lifting these restrictions are evaluated and ideas for future improvements and methodologies are discussed.

2.
Angew Chem Int Ed Engl ; 60(7): 3596-3602, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33166088

ABSTRACT

Identification and quantification of redox-active centers at relevant conditions for catalysis is pivotal to understand reaction mechanisms and requires development of advanced operando methods. Herein, we demonstrate operando EPR spectroscopy as an important technique to quantify the oxidation state of representative CrPO4 and EuOCl catalysts during propane oxychlorination, an attractive route for propylene production. In particular, we show that the space-time-yield of C3 H6 correlates with the amount of Cr2+ and Eu2+ ions generated over the catalysts during reaction. These results provide a powerful strategy to gather quantitative understanding of selective alkane oxidation, which could potentially be extrapolated to other functionalization approaches and operating conditions.

3.
J Magn Reson ; 289: 100-106, 2018 04.
Article in English | MEDLINE | ID: mdl-29476927

ABSTRACT

The g factor of paramagnetic defects in commercial high performance carbon fibers was determined by a double resonance experiment based on the Overhauser shift due to hyperfine coupled protons. Our carbon fibers exhibit a single, narrow and perfectly Lorentzian shaped ESR line and a g factor slightly higher than gfree with g=2.002644=gfree·(1+162ppm) with a relative uncertainty of 15ppm. This precisely known g factor and their inertness qualify them as a high precision g factor standard for general purposes. The double resonance experiment for calibration is applicable to other potential standards with a hyperfine interaction averaged by a process with very short correlation time.

4.
J Magn Reson ; 230: 27-39, 2013 May.
Article in English | MEDLINE | ID: mdl-23434533

ABSTRACT

We demonstrate that adiabatic and fast passage ultra-wideband (UWB) pulses can achieve inversion over several hundreds of MHz and thus enhance the measurement sensitivity, as shown by two selected experiments. Technically, frequency-swept pulses are generated by a 12 GS/s arbitrary waveform generator and upconverted to X-band frequencies. This pulsed UWB source is utilized as an incoherent channel in an ordinary pulsed EPR spectrometer. We discuss experimental methodologies and modeling techniques to account for the response of the resonator, which can strongly limit the excitation bandwidth of the entire non-linear excitation chain. Aided by these procedures, pulses compensated for bandwidth or variations in group delay reveal enhanced inversion efficiency. The degree of bandwidth compensation is shown to depend critically on the time available for excitation. As a result, we demonstrate optimized inversion recovery and double electron electron resonance (DEER) experiments. First, virtually complete inversion of the nitroxide spectrum with an adiabatic pulse of 128ns length is achieved. Consequently, spectral diffusion between inverted and non-inverted spins is largely suppressed and the observation bandwidth can be increased to increase measurement sensitivity. Second, DEER is performed on a terpyridine-based copper (II) complex with a nitroxide-copper distance of 2.5nm. As previously demonstrated on this complex, when pumping copper spins and observing nitroxide spins, the modulation depth is severely limited by the excitation bandwidth of the pump pulse. By using fast passage UWB pulses with a maximum length of 64ns, we achieve up to threefold enhancement of the modulation depth. Associated artifacts in distance distributions when increasing the bandwidth of the pump pulse are shown to be small.


Subject(s)
Algorithms , Electron Spin Resonance Spectroscopy/methods , Models, Chemical , Signal Processing, Computer-Assisted , Computer Simulation , Electrons
5.
J Magn Reson ; 222: 34-43, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22820007

ABSTRACT

We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 T for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 µM range. The DNP effects at such low concentrations are weak and the experimentally achievable dynamic nuclear polarizations can be below the equilibrium polarization. This sensitivity problem is solved with an optimized home-built DNP probe head consisting of a dielectric microwave resonator and a saddle coil as close as possible to the sample. The performance of the probe head is demonstrated with both a modified pulsed EPR spectrometer and a dedicated CW EPR spectrometer equipped with a commercial NMR console. In comparison to a commercial pulsed ENDOR resonator, the home-built resonator has an FID detection sensitivity improvement of 2.15 and an electron spin excitation field improvement of 1.2. The reproducibility of the DNP results is tested on the water soluble maltose binding protein MalE of the ABC maltose importer, where we determine a net standard deviation of 9% in the primary DNP data in the concentration range between 10 and 100 µM. DNP parameters are measured in a spin-labeled membrane protein, namely the vitamin B(12) importer BtuCD in both detergent-solubilized and reconstituted states. The data obtained in different nucleotide states in the presence and absence of binding protein BtuF reveal the applicability of this technique to qualitatively extract water accessibility changes between different conformations by the ratio of primary DNP parameters ϵ. The ϵ-ratio unveils the physiologically relevant transmembrane communication in the transporter in terms of changes in water accessibility at the cytoplasmic gate of the protein induced by both BtuF binding at the periplasmic region of the transporter and ATP binding at the cytoplasmic nucleotide binding domains.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Algorithms , Amino Acid Substitution , Cyclic N-Oxides/chemistry , Cysteine/genetics , Detergents , Electrons , Indicators and Reagents , Liposomes , Membrane Proteins/genetics , Microwaves , Mutagenesis, Site-Directed , Plasmids/genetics , Protein Conformation , Spin Labels , Temperature , Translocation, Genetic , Water/chemistry
6.
Phys Chem Chem Phys ; 14(30): 10762-73, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22751953

ABSTRACT

Measurement of distances with the Double Electron-Electron Resonance (DEER) experiment at X-band frequencies using a pair of nitroxides as spin labels is a popular biophysical tool for studying function-related conformational dynamics of proteins. The technique is intrinsically highly precise and can potentially access the range from 1.5 to 6-10 nm. However, DEER performance drops strongly when relaxation rates of the nitroxide spin labels are high and available material quantities are low, which is usually the case for membrane proteins reconstituted into liposomes. This leads to elevated noise levels, very long measurement times, reduced precision, and a decrease of the longest accessible distances. Here we quantify the performance improvement that can be achieved at Q-band frequencies (34.5 GHz) using a high-power spectrometer. More than an order of magnitude gain in sensitivity is obtained with a homebuilt setup equipped with a 150 W TWT amplifier by using oversized samples. The broadband excitation enabled by the high power ensures that orientation selection can be suppressed in most cases, which facilitates extraction of distance distributions. By varying pulse lengths, Q-band DEER can be switched between orientationally non-selective and selective regimes. Because of suppression of nuclear modulations from matrix protons and deuterons, analysis of the Q-band data is greatly simplified, particularly in cases of very small DEER modulation depth due to low binding affinity between proteins forming a complex or low labelling efficiency. Finally, we demonstrate that a commercial Q-band spectrometer can be readily adjusted to the high-power operation.


Subject(s)
Nitrogen Oxides/chemistry , Electron Spin Resonance Spectroscopy , Liposomes/chemistry , Spin Labels
7.
J Magn Reson ; 200(1): 81-7, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19581114

ABSTRACT

The construction and performance of a cryogenic 35GHz pulse electron nuclear double resonance (ENDOR) probehead for large samples is presented. The resonator is based on a rectangular TE(102) cavity in which the radio frequency (rf) B(2)-field is generated by a two turn saddle ENDOR coil crossing the resonator along the sample axis with minimal distance to the sample tube. An rf power efficiency factor is used to define the B(2)-field strength per square-root of the transmitted rf power over the frequency range 2-180MHz. The distributions of the microwave B(1)- and E(1)-field, and the rf B(2)-field are investigated by electromagnetic field calculations. All dielectrics, the sample tube, and coupling elements are included in the calculations. The application range of the probehead and the advantages of using large sample sizes are demonstrated and discussed on a number of paramagnetic samples containing transition metal ions.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Algorithms , Coal/analysis , Cold Temperature , Computer Simulation , Electromagnetic Fields , Glycine/chemistry , Helium , Indoles/chemistry , Isoindoles , Metalloproteins/chemistry , Organometallic Compounds/chemistry , Porphyrins/chemistry
8.
J Magn Reson ; 190(2): 280-91, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055237

ABSTRACT

The construction and performance of a Q-band (35GHz) cryogenic probehead for pulse electron paramagnetic resonance and continuous wave electron paramagnetic resonance measurements with down-scaled loop gap resonators (LGRs) is presented. The advantage of the LGR in comparison to TE(012) resonators lies in the large B(1) microwave (mw) fields that can be generated with moderate input mw power. We demonstrated with several examples that this allows optimal performance for double-quantum electron coherence, HYSCORE, and hyperfine decoupling experiments employing matched and high turning angle mw pulses with high B(1)-fields. It is also demonstrated that with very low excitation power (i.e. 10-40 mW), B(1)-fields in LGRs are still sufficient to allow short mw pulses and thus experiments such as HYSCORE with high-spin systems to be performed with good sensitivity. A sensitivity factor Lambda(rs) of LGRs with different diameters and lengths is introduced in order to compare the sensitivity of different resonant structures. The electromagnetic field distribution, the B(1)-field homogeneity, the E(1)-field strength, and the microwave coupling between wave guide and LGRs are investigated by electromagnetic field calculations. The advantage and application range using LGRs for small sample diameters is discussed.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Microwaves , Cold Temperature , Equipment Design , Histidine/chemistry , Signal Processing, Computer-Assisted
9.
J Magn Reson ; 166(2): 246-51, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14729036

ABSTRACT

Direct detection of free induction decays and electron spin echoes, and the recording of echo-detected EPR spectra and electron spin echo envelope modulation patterns at a microwave frequency of 2.5 GHz is demonstrated. This corresponds to the measurement of the transverse magnetization in the laboratory frame, rather than in the rotating frame as usually done by down-converting the signal (homodyne detection). An oscilloscope with a 6-GHz analog bandwidth, a sampling rate of 20 GigaSamples per second, and a trigger frequency of 5 GHz for the edge trigger and 750 MHz for the advanced trigger, is used in these experiments. For signal averaging a 3-GHz microwave clock divider has been developed to synchronize the oscilloscope with the frequency of the EPR signal. Moreover, direct detection of continuous wave EPR signals at 2.5 GHz is described.

SELECTION OF CITATIONS
SEARCH DETAIL
...