Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Acta Physiol (Oxf) ; 218(2): 98-111, 2016 10.
Article in English | MEDLINE | ID: mdl-27174490

ABSTRACT

AIM: To determine whether the ultrastructure of the capillary system in human skeletal muscle changes during advancing senescence, we evaluated the compartmental and subcompartmental organization of capillaries from vastus lateralis muscle (VL) biopsies of 41 non-diseased persons aged 23-75 years. METHODS: From each VL biopsy, 38-40 randomly selected capillaries were assessed by transmission electron microscopy and subsequent morphometry with a newly established tablet-based image analysis technique. RESULTS: Quantification of the compartmental organization revealed most indicators of the capillary ultrastructure to be only non-significantly altered (P > 0.05) over age. However, the peri-capillary basement membrane (BM) was thicker in the older participants than in the younger ones (P ≤ 0.05). Regression analysis revealed a bipartite relationship between the two parameters: a homogenous slight increase in BM thickness up to the age of approximately 50 years was followed by a second phase with more scattered BM thickness values. In 44.5% of the capillary profiles, projections/filopodia of the pericytes (PCs) traversed the BM and invaded endothelial cells (ECs) visible as PC pegs in pale cytoplasm holes (EC sockets). Strikingly, PC pegs were often in proximity to the EC nucleus. In PC profiles, sockets were likewise detected in 14.2% of the capillaries. Within these PC sockets, cellular profiles were frequently seen, which could be assigned to EC filopodia, internal PC curling or PC-PC interactions. Quantification of the occurrence of peg-socket junctions revealed the proportions of empty EC sockets and empty PC sockets to increase (P ≤ 0.05) during ageing. CONCLUSION: Our investigation demonstrates advancing senescence to be associated with increase in BM thickness and loss of EC and PC filopodia length in skeletal muscle capillaries.


Subject(s)
Aging/physiology , Capillaries/ultrastructure , Muscle, Skeletal/blood supply , Adult , Aged , Basement Membrane/ultrastructure , Cytoplasm/ultrastructure , Endothelial Cells/physiology , Endothelial Cells/ultrastructure , Female , Humans , Hypertension/pathology , Image Processing, Computer-Assisted , Male , Microscopy, Electron, Transmission , Middle Aged , Muscle, Skeletal/physiology , Neovascularization, Physiologic/physiology , Pericytes/physiology , Peripheral Arterial Disease/pathology , Young Adult
2.
Cells Tissues Organs ; 198(6): 457-69, 2013.
Article in English | MEDLINE | ID: mdl-24713584

ABSTRACT

The uterine tube is an essential conduit for the gametes and zygote during reproduction. The necessary bidirectional conveyance occurs through peristalsis and ciliary activity, but unlike in respiratory tract, little is known about mucociliary transport in the uterine tube, and the direction of transport and the alignment of oviductal cilia have not been conclusively characterized. This study aimed to determine the uniformity in the axonemal orientation of motile cilia in the bovine uterine tube, to identify the direction of mucociliary transport and to relate the presumptive beating plane and the mucociliary transport direction to the long axis of the uterine tube. The angular spread of oviductal motile cilia was determined by electron microscopy, and by maintaining the accurate alignment of the samples throughout the processing steps, axonemal orientation was determined relative to the long axis of the oviduct. The direction of the effective mucociliary transport was determined by the analysis of video microscopic data recorded on explants. Vector-based analysis of electron micrographs yielded the mean angle of deviation between the 'effective ciliary stroke', as derived from axonemal orientation, and the tubal longitudinal axis pointing towards the uterus to be 0.8°, with a standard deviation of 35.2°. The corresponding angular deviation of the short-wave propagation was -6.8° (SD 34.6°). These results show that oviductal motile cilia are rigorously aligned, that the beating plane of the cilia is parallel to the long axis of the uterine tube and that the 'effective stroke' and mucociliary transport are directed towards the uterus.


Subject(s)
Biological Transport/physiology , Cilia/physiology , Fallopian Tubes/metabolism , Spermatozoa/metabolism , Animals , Cattle , Female , Male , Microscopy, Electron , Reproduction
3.
J Microsc ; 243(1): 47-59, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21375529

ABSTRACT

STEPanizer is an easy-to-use computer-based software tool for the stereological assessment of digitally captured images from all kinds of microscopical (LM, TEM, LSM) and macroscopical (radiology, tomography) imaging modalities. The program design focuses on providing the user a defined workflow adapted to most basic stereological tasks. The software is compact, that is user friendly without being bulky. STEPanizer comprises the creation of test systems, the appropriate display of digital images with superimposed test systems, a scaling facility, a counting module and an export function for the transfer of results to spreadsheet programs. Here we describe the major workflow of the tool illustrating the application on two examples from transmission electron microscopy and light microscopy, respectively.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy/methods , Animals , Liver/pathology , Lung/pathology , Rats
5.
J Anat ; 211(1): 26-36, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17553103

ABSTRACT

A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood-gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood-gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 +/- 0.001 cm(3) with an air space surface area of 4.85 +/- 0.43 cm(2). Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 +/- 0.56 mL O(2) min(-1) kg(-1). The epidermis was poorly developed, and measured 29.97 +/- 4.88 microm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 +/- 0.98 microm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange.


Subject(s)
Animals, Newborn/anatomy & histology , Lung/anatomy & histology , Lung/physiology , Macropodidae/anatomy & histology , Respiratory Physiological Phenomena , Animals , Animals, Newborn/physiology , Blood-Air Barrier/ultrastructure , Capillaries/ultrastructure , Macropodidae/physiology , Microscopy, Electron, Transmission , Pulmonary Diffusing Capacity , Pulmonary Gas Exchange , Skin/blood supply , Skin/metabolism
6.
Respir Physiol Neurobiol ; 138(2-3): 309-24, 2003 Nov 14.
Article in English | MEDLINE | ID: mdl-14609519

ABSTRACT

An utrastructural morphometric study of the postnatally remodelling lungs of the quokka wallaby (Setonix brachyurus) was undertaken. Allometric scaling of the volumes of the parenchymal components against body mass was performed. Most parameters showed a positive correlation with body mass in all the developmental stages, except the volume of type II pneumocytes during the alveolar stage. The interstitial tissue and type II cell volumes increased slightly faster than body mass in the saccular stage, their growth rates declining in the alveolar stage. Conversely, type I pneumocyte volumes increased markedly in both the saccular and alveolar stages. Both capillary and endothelial volumes as well as the capillary and airspace surface areas showed highest rates of increase during the alveolar stage, at which time the rate was notably higher than that of the body mass. The pulmonary diffusion capacity increased gradually, the rate being highest in the alveolar stage and the adult values attained were comparable to those of eutherians.


Subject(s)
Aging/physiology , Lung/ultrastructure , Analysis of Variance , Animals , Animals, Newborn , Body Weights and Measures , Linear Models , Lung/growth & development , Lung/physiology , Lung Volume Measurements , Marsupialia , Microscopy, Electron/methods
7.
Br J Ophthalmol ; 86(4): 400-3, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11914208

ABSTRACT

AIMS: To evaluate the endothelial quality of corneas obtained from pseudophakic donors and to compare the data with matched phakic controls. METHODS: Corneas from eyes with posterior chamber intraocular lenses (PCIOLs) and corneas from phakic eyes (controls) were stored for 1-2 weeks in organ culture and then examined after staining with Alizarin red S. The corneas were divided into two groups according to the duration of storage. Endothelial cell density, the percentage of hexagonal cells, and the coefficient of variation (CV) were determined. RESULTS: There was no statistically significant difference between the 14 PCIOL corneas and the 13 controls stored in organ culture for 7 days for any of the three parameters studied. The mean cell density was 2155 (SD 529) cells/mm(2) in the PCIOL corneas and 2118 (453) cells/mm(2) in the controls (p=0.85). The mean percentage of hexagonal cells was 52% (8%) and 58% (7%), respectively (p=0.06). The mean CV was 0.32 (0.18) in the pseudophakic corneas and 0.39 (0.18) in the controls (p=0.33). Moreover, there was no significant difference between the PCIOL corneas and the controls stored for up to 2 weeks. CONCLUSIONS: The corneal endothelium from eyes with PCIOLs appears to be similar to that of phakic eyes after 1-2 weeks in organ culture. This finding suggests that corneas from pseudophakic eyes should not routinely be disqualified for transplantation. The use of at least some pseudophakic corneas may substantially increase the potential donor pool.


Subject(s)
Corneal Transplantation/standards , Endothelium, Corneal , Organ Culture Techniques/standards , Pseudophakia/pathology , Aged , Aged, 80 and over , Cell Count , Female , Humans , Male , Time Factors
8.
Genes Dev ; 15(17): 2307-19, 2001 Sep 01.
Article in English | MEDLINE | ID: mdl-11544187

ABSTRACT

The mammalian Cutl1 gene codes for the CCAAT displacement protein (CDP), which has been implicated as a transcriptional repressor in diverse processes such as terminal differentiation, cell cycle progression, and the control of nuclear matrix attachment regions. To investigate the in vivo function of Cutl1, we have replaced the C-terminal Cut repeat 3 and homeodomain exons with an in-frame lacZ gene by targeted mutagenesis in the mouse. The CDP-lacZ fusion protein is retained in the cytoplasm and fails to repress gene transcription, indicating that the Cutl1(lacZ) allele corresponds to a null mutation. Cutl1 mutant mice on inbred genetic backgrounds are born at Mendelian frequency, but die shortly after birth because of retarded differentiation of the lung epithelia, which indicates an essential role of CDP in lung maturation. A less pronounced delay in lung development allows Cutl1 mutant mice on an outbred background to survive beyond birth. These mice are growth-retarded and develop an abnormal pelage because of disrupted hair follicle morphogenesis. The inner root sheath (IRS) is reduced, and the transcription of Sonic hedgehog and IRS-specific genes is deregulated in Cutl1 mutant hair follicles, consistent with the specific expression of Cutl1 in the progenitors and cell lineages of the IRS. These data implicate CDP in cell-lineage specification during hair follicle morphogenesis, which resembles the role of the related Cut protein in specifying cell fates during Drosophila development.


Subject(s)
Epithelial Cells/metabolism , Lung/cytology , Nuclear Proteins/physiology , Repressor Proteins/physiology , Alleles , Animals , Cell Differentiation , Cytoplasm/metabolism , DNA, Complementary/metabolism , Drosophila , Exons , Gene Expression Regulation, Developmental , Hair/embryology , Hedgehog Proteins , Homeodomain Proteins , Immunohistochemistry , In Situ Hybridization , Lung/embryology , Lung/pathology , Mice , Models, Genetic , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Protein Structure, Tertiary , Time Factors , Trans-Activators/metabolism , Transcription, Genetic , Transfection , beta-Galactosidase/metabolism
9.
Circ Res ; 86(3): 286-92, 2000 Feb 18.
Article in English | MEDLINE | ID: mdl-10679480

ABSTRACT

Intussusceptive angiogenesis is a novel mode of blood vessel formation and remodeling, which occurs by internal division of the preexisting capillary plexus without sprouting. In this study, the process is demonstrated in developing chicken eye vasculature and in the chorioallantoic membrane by methylmethacrylate (Mercox) casting, transmission electron microscopy, and in vivo observation. In a first step of intussusceptive angiogenesis, the capillary plexus expands by insertion of numerous transcapillary tissue pillars, ie, by intussusceptive microvascular growth. In a subsequent step, a vascular tree arises from the primitive capillary plexus as a result of intussusceptive pillar formation and pillar fusions, a process we termed "intussusceptive arborization." On the basis of the morphological observations, a 4-step model for intussusceptive arborization is proposed, as follows: phase I, numerous circular pillars are formed in rows, thus demarcating future vessels; phase II, formation of narrow tissue septa by pillar reshaping and pillar fusions; phase III, delineation, segregation, growth, and extraction of the new vascular entity by merging of septa; and phase IV, formation of new branching generations by successively repeating the process, complemented by growth and maturation of all components. In contrast to sprouting, intussusceptive angiogenesis does not require intense local endothelial cell proliferation; it is implemented primarily by rearrangement and attenuation of the endothelial cell plates. In summary, transcapillary pillar formation, ie, intussusception, is a central and probably widespread process, which plays a role not only in capillary network growth and expansion (intussusceptive microvascular growth), but also in vascular plexus remodeling and tree formation (intussusceptive arborization).


Subject(s)
Blood Vessels/embryology , Capillaries/embryology , Neovascularization, Physiologic/physiology , Allantois/blood supply , Animals , Blood Vessels/ultrastructure , Capillaries/ultrastructure , Chick Embryo , Chorion/blood supply , Choroid/blood supply , Choroid/embryology , Choroid/ultrastructure , Corrosion Casting , Image Processing, Computer-Assisted , Methylmethacrylate , Microcirculation , Microscopy, Electron
10.
Ann Thorac Surg ; 68(4): 1165-70, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10543474

ABSTRACT

BACKGROUND: The use of reduced-size adult lung transplants could help solve the profound pediatric donor lung shortage. However, adequate long-term function of the mature grafts requires growth in proportion to the recipient's development. METHODS: Mature left lower lobes from adult mini-pigs (age: 7 months; mean body weight: 30 kg) were transplanted into 14-week-old piglets (mean body weight: 15 kg). By the end of the 14-week holding period, lungs of the recipients (n = 4) were harvested. After volumetric measurements, the lung morphology was studied using light microscopy, scanning, and transmission electron microscopy. Changes of alveolar airspace volume were determined using a computer aided image analysis system. Comparisons were made to age- and weight-matched controls. RESULTS: Volumetric studies showed no significant differences (p = 0.49) between the specific volume (mL/kg body weight) of lobar grafts and left lower lobes of adult controls. Morphologic studies showed marked structural differences between the grafts and the right native lungs of the recipients, with increased average alveolar diameter of the grafts. On light microscopy and scanning electron microscopy, alveoli appeared dilated and rounded compared to the normal polygonal shape in the controls. The computer generated semi-quantitative data of relative alveolar airspace volume tended to be higher in transplanted lobes. CONCLUSIONS: The mature pulmonary lobar grafts have filled the growing left hemithorax of the developing recipient. Emphysema-like alterations of the grafts were observed without evidence of alveolar growth in the mature lobar transplants. Thus, it can be questioned whether mature pulmonary grafts can guarantee sufficient long-term gas exchange in growing recipients.


Subject(s)
Lung Transplantation/physiology , Lung/growth & development , Age Factors , Animals , Blood-Air Barrier/physiology , Female , Lung/pathology , Lung Transplantation/pathology , Microscopy, Electron , Microscopy, Electron, Scanning , Pneumonectomy , Pulmonary Alveoli/pathology , Swine , Swine, Miniature
11.
J Exp Biol ; 200(Pt 18): 2415-23, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9343854

ABSTRACT

The extents of functional surfaces (villi, microvilli) have been estimated at different longitudinal sites, and in the entire small intestine, for three species of bats belonging to two feeding groups: insect- and fruit-eaters. In all species, surface areas and other structural quantities tended to be greatest at more cranial sites and to decline caudally. The entomophagous bat (Miniopterus inflatus) had a mean body mass (coefficient of variation) of 8.9 g (5%) and a mean intestinal length of 20 cm (6%). The surface area of the basic intestinal tube (primary mucosa) was 9.1 cm2 (10%) but this was amplified to 48 cm2 (13%) by villi and to 0.13 m2 (20%) by microvilli. The total number of microvilli per intestine was 4 x 10(11) (20%). The average microvillus had a diameter of 8 nm (10%), a length of 1.1 microns (22%) and a membrane surface area of 0.32 micron 2 (31%). In two species of fruit bats (Epomophorus wahlbergi and Lisonycteris angolensis), body masses were greater and intestines longer, the values being 76.0 g (18%) and 76.9 g (4%), and 73 cm (16%) and 72 cm (7%), respectively. Surface areas were also greater, amounting to 76 cm2 (26%) and 45 cm2 (8%) for the primary mucosa, 547 cm2 (29%) and 314 cm2 (16%) for villi and 2.7 m2 (23%) and 1.5 m2 (18%) for microvilli. An increase in the number of microvilli, 33 x 10(11) (19%) and 15 x 10(11) (24%) per intestine, contributed to the more extensive surface area but there were concomitant changes in the dimensions of microvilli. Mean diameters were 94 nm (8%) and 111 nm (4%), and mean lengths were 2.8 microns (12%) and 2.9 microns (10%), respectively. Thus, an increase in the surface area of the average microvillus to 0.83 micron 2 (12%) and 1.02 microns 2 (11%) also contributed to the greater total surface area of microvilli. The lifestyle-related differences in total microvillous surface areas persisted when structural quantities were normalised for the differences in body masses. The values for total microvillous surface area were 148 cm2g-1 (20%) in the entomophagous bat, 355 cm2g-1 (20%) in E. wahlbergi and 192 cm2g-1 (17%) in L. angolensis. This was true despite the fact that the insecteater possessed a greater length of intestine per unit of body mass: 22 mm g-1 (8%) versus 9-10 mm g-1 (9-10%) for the fruit-eaters.


Subject(s)
Chiroptera/anatomy & histology , Intestine, Small/ultrastructure , Animals , Body Weight , Diet , Fruit , Insecta , Intestinal Mucosa/ultrastructure , Microscopy, Electron , Species Specificity
13.
Pediatr Res ; 37(6): 783-8, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7651764

ABSTRACT

We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.


Subject(s)
Lactation/physiology , Lung/growth & development , Protein-Energy Malnutrition/pathology , Animals , Animals, Suckling , Body Weight/physiology , Eating/physiology , Female , Lung Volume Measurements , Male , Rats
14.
Pediatr Res ; 37(6): 789-95, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7651765

ABSTRACT

Effects of protein deficiency during the whole period of postnatal development and intensive growth were studied in the rat lung parenchyma. Dams received a low protein diet as follows: early restriction, 8% casein diet from parturition, and delayed restriction, 12% then 8% casein diet from lactation d 8. After weaning (d 21), early restriction and delayed restriction group rats were maintained on the 8% casein diet until d 49, wherefore they were returned to normal food (18% casein) for 11 wk. Lungs were processed for light and electron microscopic morphometry on d 21, 49, and 126. The diffusion capacity of the lung for O2 (DLO2) was also determined from the morphologic parameters. Volume and surface densities of the parenchymal components of malnourished rats did not consistently differ from controls. Because of lower lung volumes, absolute values, including DLO2, were all significantly decreased. Further, although lung volume growth was less impaired than body growth and thus deviated from the normal allometric relationship, most morphometric parameters paralleled body weight changes. Visually, we detected minor morphologic alterations at d 21 and 49, not necessarily reflected by morphometric data. But, importantly, lung parenchyma appeared mature at weaning despite the growth retardation. Normal refeeding resulted in a striking regrowth of the lung parenchyma. Although early restriction rats did not fully catch up in lung volume, most parenchymal parameters and DLO2 were largely restored in both refed groups.


Subject(s)
Lung/pathology , Protein Deficiency/pathology , Animals , Animals, Suckling , Diffusion , Lactation/metabolism , Lung/growth & development , Male , Random Allocation , Rats
15.
Biol Neonate ; 68(4): 229-45, 1995.
Article in English | MEDLINE | ID: mdl-8580214

ABSTRACT

Postnatal formation of alveoli can be largely prevented by glucocorticoid treatment, which accelerates alveolar wall thinning and inhibits outgrowth of new interalveolar septa. Since a double capillary network is a prerequisite for interalveolar wall formation, we hypothesized that glucocorticoid treatment inhibited alveolar formation, indirectly, by inducing precocious microvascular maturation. Between 4 and 60 days we followed up qualitatively and quantitatively the effects of 2 weeks (days 2-15) of daily Decadron (Dexamethasone phosphate) injections on the lung structure. Glucocorticoid induced only small changes in body weight or lung volume. However, during the first 2 weeks, it accelerated alveolar wall thinning and microvascular maturation and partly suppressed the outgrowth of new interalveolar septa. In Decadron-treated rats, the interstitial tissue mass was significantly reduced during the first 2 weeks, and a larger alveolar surface area was endowed with a capillary monolayer on days 10 and 13. One week after drug withdrawal, the trend towards precocious maturation of the lung was reversed. Lipofibroblasts reappeared, and inter-airspace septa regressed towards a more immature state. We found indications of a second burst of alveolization by resumption of secondary septa formation. The late sequelae of Decadron treatment (day 60) were manifested as an 'emphysematous' condition of the lungs, with larger and fewer airspaces, the delayed alveolization being insufficient to compensate for the initial deficit.


Subject(s)
Dexamethasone/analogs & derivatives , Glucocorticoids/pharmacology , Lung/drug effects , Animals , Animals, Newborn , Body Weight/drug effects , Body Weight/physiology , Capillaries/ultrastructure , Dexamethasone/pharmacology , Dose-Response Relationship, Drug , Female , Lung/growth & development , Lung/physiology , Lung Volume Measurements , Male , Microscopy, Electron , Pregnancy , Pulmonary Alveoli/blood supply , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/growth & development , Rats , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...