Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 359(6380): 1136-1139, 2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29590042

ABSTRACT

Water-rich regions in Earth's deeper mantle are suspected to play a key role in the global water budget and the mobility of heat-generating elements. We show that ice-VII occurs as inclusions in natural diamond and serves as an indicator for such water-rich regions. Ice-VII, the residue of aqueous fluid present during growth of diamond, crystallizes upon ascent of the host diamonds but remains at pressures as high as 24 gigapascals; it is now recognized as a mineral by the International Mineralogical Association. In particular, ice-VII in diamonds points toward fluid-rich locations in the upper transition zone and around the 660-kilometer boundary.

2.
Appl Environ Microbiol ; 84(7)2018 04 01.
Article in English | MEDLINE | ID: mdl-29374032

ABSTRACT

Snow algae can form large-scale blooms across the snowpack surface and near-surface environments. These pigmented blooms can decrease snow albedo and increase local melt rates, and they may impact the global heat budget and water cycle. Yet, the underlying causes for the geospatial occurrence of these blooms remain unconstrained. One possible factor contributing to snow algal blooms is the presence of mineral dust as a micronutrient source. We investigated the bioavailability of iron (Fe)-bearing minerals, including forsterite (Fo90, Mg1.8Fe0.2SiO4), goethite, smectite, and pyrite as Fe sources for a Chloromonas brevispina-bacterial coculture through laboratory-based experimentation. Fo90 was capable of stimulating snow algal growth and increased the algal growth rate in otherwise Fe-depleted cocultures. Fo90-bearing systems also exhibited a decrease in the ratio of bacteria to algae compared to those of Fe-depleted conditions, suggesting a shift in microbial community structure. The C. brevispina coculture also increased the rate of Fo90 dissolution relative to that of an abiotic control. Analysis of 16S rRNA genes in the coculture identified Gammaproteobacteria, Betaproteobacteria, and Sphingobacteria, all of which are commonly found in snow and ice environments. Archaea were not detected. Collimonas and Pseudomonas, which are known to enhance mineral weathering rates, comprised two of the top eight (>1%) operational taxonomic units (OTUs). These data provide unequivocal evidence that mineral dust can support elevated snow algal growth under otherwise Fe-depleted growth conditions and that snow algal microbial communities can enhance mineral dissolution under these conditions.IMPORTANCE Fe, a key micronutrient for photosynthetic growth, is necessary to support the formation of high-density snow algal blooms. The laboratory experiments described herein allow for a systematic investigation of the interactions of snow algae, bacteria, and minerals and their ability to mobilize and uptake mineral-bound Fe. Results provide unequivocal and comprehensive evidence that mineral-bound Fe in Fe-bearing Fo90 was bioavailable to Chloromonas brevispina snow algae within an algal-bacterial coculture. This evidence includes (i) an observed increase in snow algal density and growth rate, (ii) decreased ratios of bacteria to algae in Fo90-containing cultures relative to those of cultures grown under similarly Fe-depleted conditions with no mineral-bound Fe present, and (iii) increased Fo90 dissolution rates in the presence of algal-bacterial cocultures relative to those of abiotic mineral controls. These results have important implications for the role of mineral dust in supplying micronutrients to the snow microbiome, which may help support dense snow algal blooms capable of lowering snow albedo and increasing snow melt rates on regional, and possibly global, scales.


Subject(s)
Bacteria/metabolism , Chlorophyceae/metabolism , Eutrophication , Iron/metabolism , Minerals/metabolism , Snow/microbiology , Biological Availability , Coculture Techniques
3.
Nat Commun ; 8: 14667, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262701

ABSTRACT

Meteorites represent the only samples available for study on Earth of a number of planetary bodies. The minerals within meteorites therefore hold the key to addressing numerous questions about our solar system. Of particular interest is the Ca-phosphate mineral merrillite, the anhydrous end-member of the merrillite-whitlockite solid solution series. For example, the anhydrous nature of merrillite in Martian meteorites has been interpreted as evidence of water-limited late-stage Martian melts. However, recent research on apatite in the same meteorites suggests higher water content in melts. One complication of using meteorites rather than direct samples is the shock compression all meteorites have experienced, which can alter meteorite mineralogy. Here we show whitlockite transformation into merrillite by shock-compression levels relevant to meteorites, including Martian meteorites. The results open the possibility that at least part of meteoritic merrillite may have originally been H+-bearing whitlockite with implications for interpreting meteorites and the need for future sample return.

4.
J Phys Condens Matter ; 28(3): 035403, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26733233

ABSTRACT

At ambient conditions the anhydrous rare earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths and by increasing pressure. Tb0.5Gd0.5PO4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb0.5Gd0.5PO4 does not transform directly to monazite but through an intermediate anhydrite-type structure. Axial deformation of the unit cell near the anhydrite- to monazite-type transition indicates softening of the (c1133 + c1313) combined elastic moduli. Stress response of rare-earth orthophosphate ceramics can be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. We report the first structural data for an anhydrite-type rare earth orthophosphate.

5.
J Phys Condens Matter ; 25(16): 162201, 2013 Apr 24.
Article in English | MEDLINE | ID: mdl-23503105

ABSTRACT

The compression behaviour of a solid solution of ThO2 and hyperstoichiometric UO2 was examined up to 11 GPa hydrostatic pressure using x-ray diffraction. We observed a distortive phase transition above 3 GPa from fluorite-type to a structure isotypic with t-zirconia. The transition is tentatively explained by merging of local tetragonal UO(2+δ) clusters into an itinerant structural distortion. The bulk modulus increases from 162 ± 1 to 199 ± 4 GPa in the tetragonal phase by stiffening of the c-axis compression.

6.
J Chem Phys ; 134(4): 044526, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21280767

ABSTRACT

We show that, in addition to the known monohydrate, LiOH forms a dihydrate at elevated pressure. The dihydrate involves a large number of H-bonds establishing chains along the <001> direction. In addition, the energy surface exhibits a saddle point for proton locations along certain O interatomic distances, a feature characteristic for superprotonic conductors. However, MD simulations indicate that LiOH · 2H(2)O is not a superprotonic conductor and suggest the relevant interpolyhedral O-O distances being too large to allow for proton transfer between neighboring Li-coordinated polyhedra at least on the time scale of the MD-simulations.

7.
J Chem Phys ; 127(9): 094502, 2007 Sep 07.
Article in English | MEDLINE | ID: mdl-17824743

ABSTRACT

Using powder x-ray diffraction and first-principles calculations, we provide evidence for a structural transition of PETN-I below 6 GPa to an orthorhombic phase of space group P2(1)2(1)2. The transition can be rationalized as shear-stress induced and ferroelastic, which involves a slight static displacement of the molecules that breaks the fourfold symmetry of PETN-I. Previously reported changes in the optical spectra reflect a lifting of the twofold degeneracy of modes in tetragonal PETN-I. The observed transition is expected to induce soft shear compliances along specific directions in PETN crystallites that may relate to the observed dependence of detonation pressure on crystal orientation.

8.
Phys Rev Lett ; 87(13): 135504, 2001 Sep 24.
Article in English | MEDLINE | ID: mdl-11580605

ABSTRACT

Simple molecular solids become unstable at high pressures, typically transforming to dense framework and/or metallic structures. We report formation of an unusual ionic solid NO(+)NO(3)(-) (nitrosonium nitrate) from N(2)O at pressures above 20 GPa and temperatures above 1000 K. Synchrotron x-ray diffraction indicates that the compound crystallizes with a structure related to the aragonite form of CaCO(3) and NaNO(3). Raman and infrared spectroscopic data indicate that the structure is noncentrosymmetric and exhibits a strong pressure dependent charge transfer and orientational order.

9.
Phys Rev Lett ; 87(7): 075701, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11497902

ABSTRACT

CO(2) laser heating of solid CO(2) at pressures between 30 and 80 GPa shows that this compound breaks down to oxygen and diamond along a boundary having a negative P-T slope. This decomposition occurs at temperatures much lower than predicted in theory or inferred from previous experiment. Raman spectroscopy and x-ray diffraction were used as structural probes. At pressures higher than 40 GPa the decomposition is preceded by the formation of a new CO(2) phase (CO(2)-VI). These findings limit the stability of nonmolecular CO(2) phases to moderate temperatures and provide a new topology of the CO(2) phase diagram.

SELECTION OF CITATIONS
SEARCH DETAIL
...