Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(5): 1679-1695, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38581700

ABSTRACT

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Oxazolidinones , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacology , Oxazolidinones/chemistry , Animals , Microbial Sensitivity Tests , Mice , Humans , Linezolid/pharmacology , Linezolid/chemistry , Drug Resistance, Bacterial , Mitochondria/drug effects , Mitochondria/metabolism
2.
Chem Res Toxicol ; 33(1): 191-201, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31566356

ABSTRACT

MK-8666, a selective GPR40 agonist developed for the treatment of type 2 diabetes mellitus, was discontinued in phase I clinical trials due to liver safety concerns. To address whether chemically reactive metabolites played a causative role in the observed drug induced liver injury (DILI), we characterized the metabolism, covalent binding to proteins, and amino acid targets of MK-8666 in rat and human hepatocytes or cofactor-fortified liver microsomes. MK-8666 was primarily metabolized to an acyl glucuronide in hepatocytes of both species and a taurine conjugate in rat hepatocytes. Similar levels of covalent binding to proteins were observed in rat and human hepatocytes following incubation with [3H]MK-8666. After protease digestion of hepatocyte pellets, amino acid adducts A1, A2, and A3 were identified as transacylated products with lysine, serine, and cysteine residues, respectively. Amino acid adducts A4a-c were identified as glycation adducts resulting from rearrangement of MK-8666-1-O-ß-acyl glucuronide to ring-opened aldehydes which further condensed with lysine residues of proteins into imine adducts. Adducts A1-A3 and A4a-c were detected in rat and human liver microsomes fortified with UDPGA. Adducts A1-A3 were detected in rat and human liver microsomes fortified with CoA and ATP. Additionally, a trace amount of CoA thioester metabolite of MK-8666 and its transacylated GSH adduct were detected in human liver microsomes fortified with CoA, ATP, and GSH. Higher levels of covalent binding to protein were observed when [3H]MK-8666 was incubated in liver microsomes supplemented with CoA and ATP compared to UDPGA. Addition of GSH attenuated levels of CoA thioester-mediated covalent binding by 41-45%. Collectively, these studies indicated that metabolism of the -COOH moiety of MK-8666 can form a reactive acyl glucuronide and an acyl CoA thioester, which covalently modifies proteins and may represent one causative mechanism of the observed DILI.


Subject(s)
Hepatocytes/metabolism , Hypoglycemic Agents/pharmacology , Microsomes, Liver/metabolism , Receptors, G-Protein-Coupled/agonists , Acylation , Amino Acids/metabolism , Animals , Esters/metabolism , Glucuronides/metabolism , Humans , Protein Binding , Rats
3.
Bioorg Med Chem Lett ; 29(14): 1842-1848, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31109791

ABSTRACT

GPR40 (FFAR1 or FFA1) is a G protein-coupled receptor, primarily expressed in pancreatic islet ß-cells and intestinal enteroendocrine cells. When activated by fatty acids, GPR40 elicits increased insulin secretion from islet ß-cells only in the presence of elevated glucose levels. Towards this end, studies were undertaken towards discovering a novel GPR40 Agonist whose mode of action is via Positive Allosteric Modulation of the GPR40 receptor (AgoPAM). Efforts were made to identify a suitable GPR40 AgoPAM tool molecule to investigate mechanism of action and de-risk liver toxicity of GPR40 AgoPAMs due to reactive acyl-glucuronide (AG) metabolites.


Subject(s)
Indans/metabolism , Receptors, G-Protein-Coupled/agonists , Drug Design , Humans
4.
ACS Med Chem Lett ; 9(7): 685-690, 2018 Jul 12.
Article in English | MEDLINE | ID: mdl-30034601

ABSTRACT

A series of biaryl chromans exhibiting potent and selective agonism for the GPR40 receptor with positive allosteric modulation of endogenous ligands (AgoPAM) were discovered as potential therapeutics for the treatment of type II diabetes. Optimization of physicochemical properties through modification of the pendant aryl rings resulted in the identification of compound AP5, which possesses an improved metabolic profile while demonstrating sustained glucose lowering.

5.
Mol Pharm ; 14(5): 1634-1645, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28329443

ABSTRACT

The purpose of this research was to assess variability in pharmacokinetic profiles (PK variability) in preclinical species and identify the risk factors associated with the properties of a drug molecule that contribute to the variability. Exposure data in mouse, rat, dog, and monkey for a total of 16,592 research compounds studied between 1999 and 2013 were included in the analysis. Both in vivo study parameters and in silico/experimental physicochemical properties of the molecules were analyzed. Areas under the plasma concentration vs time curves (AUC) were used to assess PK variability. PK variability was calculated as the ratio of the highest AUC within a defined set of AUC values (AUCmax) over the lowest AUC within that set (AUCmin). Both intra- and inter-animal variability were analyzed, with intra-animal exposures found to be more variable than inter-animal exposures. While several routes of administration were initially studied, the analysis was focused on the oral route, which corresponds to the large majority of data points and displays higher variability than the subcutaneous, intraperitoneal, or intravenous routes. The association between inter-animal PK variability and physical properties was studied, and low solubility, high administered dose, high preclinical dose number (PDo), and pH-dependent solubility were found to be associated with high variability in exposures. Permeability-as assessed by the measured permeability coefficient in the LLC-PK1 cell line-was also considered but appeared to only have a weak association with variability. Consistent with these findings, BCS class I and III compounds were found to be less prone to PK variability than BCS class II and IV compounds. A modest association of PK variability with clearance was observed while the association with bioavailability, a higher PK variability for compounds with lower bioavailability, appeared to be more pronounced. Finally, two case studies that highlight PK variability issues are described, and successful mitigation strategies are presented.


Subject(s)
Drug Evaluation, Preclinical/methods , Animals , Area Under Curve , Body Fluids/metabolism , Dogs , Humans , Hydrogen-Ion Concentration , Intestinal Absorption/physiology , LLC-PK1 Cells , Mice , Permeability , Pharmaceutical Preparations/metabolism , Pharmacokinetics , Rats , Swine
6.
ACS Med Chem Lett ; 8(2): 221-226, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197316

ABSTRACT

GPR40 is a G-protein-coupled receptor expressed primarily in pancreatic islets and intestinal L-cells that has been a target of significant recent therapeutic interest for type II diabetes. Activation of GPR40 by partial agonists elicits insulin secretion only in the presence of elevated blood glucose levels, minimizing the risk of hypoglycemia. GPR40 agoPAMs have shown superior efficacy to partial agonists as assessed in a glucose tolerability test (GTT). Herein, we report the discovery and optimization of a series of potent, selective GPR40 agoPAMs. Compound 24 demonstrated sustained glucose lowering in a chronic study of Goto Kakizaki rats, showing no signs of tachyphylaxis for this mechanism.

7.
Bioorg Med Chem Lett ; 25(22): 5437-43, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26318999

ABSTRACT

Using structure based drug design, a novel class of potent coagulation factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds were evaluated in rat IV/PO pharmacokinetic (PK) studies and demonstrated desirable oral PK profiles. Finally, the pharmacodynamics (PD) of this class of molecules were evaluated in thrombin generation assay (TGA) in Corn Trypsin Inhibitor (CTI) citrated human plasma and demonstrated characteristics of a FIXa inhibitor.


Subject(s)
Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Factor IXa/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemistry , Heterocyclic Compounds, 3-Ring/pharmacology , Administration, Oral , Animals , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Heterocyclic Compounds, 3-Ring/chemical synthesis , Humans , Molecular Structure , Rats
8.
Bioorg Med Chem Lett ; 25(21): 4945-4949, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-25978966

ABSTRACT

Using structure based drug design (SBDD), a novel class of potent coagulation Factor IXa (FIXa) inhibitors was designed and synthesized. High selectivity over FXa inhibition was achieved. Selected compounds demonstrated oral bioavailability in rat IV/PO pharmacokinetic (PK) studies. Finally, the pharmacodynamics (PD) of this class of molecules was evaluated in Thrombin Generation Assay (TGA) in Corn Trypsin Inhibitor (CTI) citrated human plasma and demonstrated characteristics of a FIXa inhibitor.


Subject(s)
Amines/pharmacology , Enzyme Inhibitors/pharmacology , Factor IXa/antagonists & inhibitors , Administration, Oral , Amines/chemical synthesis , Amines/chemistry , Animals , Biological Availability , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Factor IXa/metabolism , Humans , Models, Molecular , Molecular Structure , Rats , Structure-Activity Relationship
9.
J Med Chem ; 56(14): 5940-8, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23808489

ABSTRACT

Hydroisoindoline 2 has been previously identified as a potent, brain-penetrant NK1 receptor antagonist with a long duration of action and improved profile of CYP3A4 inhibition and induction compared to aprepitant. However, compound 2 is predicted, based on data in preclinical species, to have a human half-life longer than 40 h and likely to have drug-drug-interactions (DDI), as 2 is a victim of CYP3A4 inhibition caused by its exclusive clearance pathway via CYP3A4 oxidation in humans. We now report 2-[(3aR,4R,5S,7aS)-5-{(1S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethoxy}-4-(2-methylphenyl)octahydro-2H-isoindol-2-yl]-1,3-oxazol-4(5H)-one (3) as a next generation NK1 antagonist that possesses an additional clearance pathway through glucuronidation in addition to that via CYP3A4 oxidation. Compound 3 has a much lower propensity for drug-drug interactions and a reduced estimated human half-life consistent with once daily dosing. In preclinical species, compound 3 has demonstrated potency, brain penetration, and a safety profile similar to 2, as well as excellent pharmacokinetics.


Subject(s)
Isoindoles/chemical synthesis , Neurokinin-1 Receptor Antagonists/chemical synthesis , Oxazoles/chemical synthesis , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Drug Interactions , Glucuronides/metabolism , Humans , Isoindoles/chemistry , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Metabolic Clearance Rate , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/pharmacokinetics , Neurokinin-1 Receptor Antagonists/pharmacology , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Peptide Fragments/pharmacology , Substance P/analogs & derivatives , Substance P/pharmacology
10.
Chem Res Toxicol ; 25(7): 1412-22, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22765480

ABSTRACT

1-{4-[(4-Phenyl-5-trifluoromethyl-2-thienyl)methoxy]benzyl}azetidine-3-carboxylic acid (MRL-A) is a potent sphingosine-1-phosphate-1 receptor agonist, with potential application as an immunosuppressant in organ transplantation or for the treatment of autoimmune diseases. When administered orally to rats, radiolabeled MRL-A was found to undergo metabolism to several reactive intermediates, and in this study, we have investigated its potential for protein modification in vivo and in vitro. MRL-A irreversibly modified liver and kidney proteins in vivo, in a dose- and time-dependent manner. The binding was found to occur selectively to microsomal and mitochondrial subcellular fractions. Following a nonspecific proteolytic digestion of liver and kidney proteins, a single major amino acid adduct was observed. This adduct was characterized with LC/MS/UV and NMR spectroscopy and was found to be the product of an unprecedented metabolic activation of the azetidine moiety leading to the formation of a ring-opened α,ß-unsaturated imine conjugated to the ε-amino group of a lysine residue. The formation of this adduct was not inhibited when rats were pretreated with 1-aminobenzotriazole, indicating that P450 enzymes were not involved in the metabolic activation of MRL-A. Rather, our findings suggested that MRL-A underwent bioactivation via a ß-oxidation pathway. Several other minor adducts were identified from protein hydrolysates and included lysine, serine, and cysteine conjugates of MRL-A. These minor adducts were also detected in microsomal incubations fortified with the cofactors for acyl-CoA synthesis and in hepatocytes. Trypsin digestion of crude liver homogenates from rats treated with radiolabeled MRL-A led to the identification of a single radioactive peptide. Its sequence, determined by LC/MS analysis, revealed that the target of the major reactive species of MRL-A in vivo is Lys676 of long chain acyl-CoA synthetase-1 (ACSL1). This lysine residue has been found to be critical for ACSL1 activity, and its modification has the potential to lead to biological consequences such as cardiac hypertrophy or thermogenesis dysregulation.


Subject(s)
Azetidines/metabolism , Proteins/metabolism , Receptors, Lysosphingolipid/agonists , Thiophenes/metabolism , Administration, Oral , Animals , Azetidines/toxicity , Biotransformation , Cells, Cultured , Chromatography, High Pressure Liquid , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Isotope Labeling , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Male , Mass Spectrometry , Microsomes, Liver/metabolism , Peptides/analysis , Proteins/chemistry , Rats , Receptors, Lysosphingolipid/metabolism , Thiophenes/toxicity
11.
Bioorg Med Chem Lett ; 21(18): 5547-51, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21784634

ABSTRACT

An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Cell Membrane Permeability/drug effects , Piperidines/pharmacology , Renin/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/metabolism , Administration, Oral , Animals , Biological Availability , Biological Transport/drug effects , Dose-Response Relationship, Drug , Mice , Mice, Knockout , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Rats , Renin/metabolism , Stereoisomerism , Structure-Activity Relationship
12.
J Am Assoc Lab Anim Sci ; 49(6): 805-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21205444

ABSTRACT

Cefovecin sodium is a third-generation broad-spectrum cephalosporin antibiotic licensed for the treatment of skin infections in cats and dogs. The objective of our study was to assess whether its pharmacokinetic profile in squirrel monkey, rhesus macaques, and cynomolgus macaques was similar to that of dogs. Plasma levels were determined by using protein precipitation followed by liquid chromatography tandem mass spectrometry. After subcutaneous dosing at 8 mg/kg, the plasma terminal half-life of cefovecin was substantially shorter in the nonhuman primates (2.6 to 8.0 h) than in dogs (102 h). The total plasma exposure (AUC(0-96h)) was 10- to 40-fold lower in nonhuman primate species. In cynomolgus macaques, cefovecin showed a similar subcutaneous bioavailability (82% compared with 100%) and volume of distribution (0.16 compared with 0.12 L/kg) as compared to dogs; however, the plasma clearance of cefovecin was 20-fold higher. Cefovecin susceptibility testing and minimum inhibitory concentrations were not established for clinical isolates in nonhuman primates. However, if the minimum inhibitory concentrations of cefovecin for various nonhuman primates pathogens are in the same range as those observed for canine pathogens, our results suggest that cefovecin used at the same dosing regimen and frequency prescribed for the dogs will be ineffective and that increases in dose or frequency (or both) may be required.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Cephalosporins/pharmacokinetics , Dogs/metabolism , Macaca fascicularis/metabolism , Macaca mulatta/metabolism , Saimiri/metabolism , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Area Under Curve , Cephalosporins/administration & dosage , Cephalosporins/blood , Dog Diseases/drug therapy , Half-Life , Injections, Subcutaneous/veterinary , Macaca fascicularis/blood , Macaca mulatta/blood , Male , Saimiri/blood , Skin Diseases, Bacterial/drug therapy , Skin Diseases, Bacterial/veterinary , Species Specificity
13.
J Med Chem ; 52(9): 3039-46, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19354254

ABSTRACT

3-[(3aR,4R,5S,7aS)-5-{(1R)-1-[3,5-bis(trifluoromethyl)phenyl]ethoxy}-4-(4-fluorophenyl)octahydro-2H-isoindol-2-yl]cyclopent-2-en-1-one (17) is a high affinity, brain-penetrant, hydroisoindoline-based neurokinin-1 (NK(1)) receptor antagonist with a long central duration of action in preclinical species and a minimal drug-drug interaction profile. Positron emission tomography (PET) studies in rhesus showed that this compound provides 90% NK(1) receptor blockade in rhesus brain at a plasma level of 67 nM, which is about 10-fold more potent than aprepitant, an NK(1) antagonist marketed for the prevention of chemotherapy-induced and postoperative nausea and vomiting (CINV and PONV). The synthesis of this enantiomerically pure compound containing five stereocenters includes a Diels-Alder condensation, one chiral separation of the cyclohexanol intermediate, an ether formation using a trichloroacetimidate intermediate, and bis-alkylation to form the cyclic amine.


Subject(s)
Brain/metabolism , Isoindoles/metabolism , Isoindoles/pharmacology , Neurokinin-1 Receptor Antagonists , Administration, Oral , Animals , Aprepitant , CHO Cells , Cricetinae , Cricetulus , Drug Interactions , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Isoindoles/chemical synthesis , Isoindoles/pharmacokinetics , Macaca mulatta , Morpholines/pharmacology , Stereoisomerism
14.
Drug Metab Dispos ; 36(8): 1659-69, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18505789

ABSTRACT

The disposition and metabolism of paraherquamide (PHQ), a potent and broad-spectrum anthelminthic, were examined in sheep, dogs, and gerbils. The metabolism of PHQ in these species was extensive and marked by significant species differences both in vitro and in vivo. In sheep and gerbils, PHQ metabolism occurs mainly at the pyrrolidine moiety, generating several metabolites that, for the most part, retained nematodicidal activity in vitro. In dogs, the dioxepene group was also extensively metabolized, ultimately resulting in formation of a catechol and loss of pharmacological activity. After oral administration of [3H]PHQ to intact sheep, gerbils, and dogs, the majority of the administered radioactivity was recovered in feces. Intact PHQ accounted for 0% (dogs) to approximately 30% (sheep and gerbils) of drug-related material in feces. A detailed investigation of the composition of the intestinal content of sheep indicated that a significant amount of the dose was still present in the rumen 24 h after dose and that PHQ underwent significant dehydration in the cecum. The oral pharmacokinetic parameters of PHQ in sheep and dogs suggest that its absorption is rapid in both species but that its apparent elimination rate is significantly higher in the dog (t(1/2) approximately 1.5 h) than it is in sheep (t(1/2) approximately 8.5 h). The short elimination half-life and the absence of PHQ or other active components in the dog gastrointestinal tract provide a potential explanation of the lack of efficacy of PHQ in this species.


Subject(s)
Indolizines/pharmacokinetics , Spiro Compounds/pharmacokinetics , Administration, Oral , Animals , Dogs , Feces/chemistry , Gerbillinae , Half-Life , Indolizines/administration & dosage , Sheep , Spiro Compounds/administration & dosage , Tritium
15.
Bioorg Med Chem Lett ; 18(5): 1696-701, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18243692

ABSTRACT

A series of imidazopyridines were evaluated as potential sodium channel blockers for the treatment of neuropathic pain. Several members were identified with good hNa(v)1.7 potency and excellent rat pharmacokinetic profiles. Compound 4 had good efficacy (52% and 41% reversal of allodynia at 2 and 4h post-dose, respectively) in the Chung rat spinal nerve ligation (SNL) model of neuropathic pain when dosed orally at 10mg/kg.


Subject(s)
Pyridines/chemistry , Pyridines/pharmacology , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/pharmacology , Sodium Channels/metabolism , Analgesics/chemistry , Analgesics/pharmacology , Animals , Inflammation/drug therapy , Molecular Structure , NAV1.7 Voltage-Gated Sodium Channel , Pain/drug therapy , Rats , Sodium Channel Blockers/pharmacokinetics , Structure-Activity Relationship
16.
Curr Opin Drug Discov Devel ; 11(1): 43-52, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18175266

ABSTRACT

Minimizing the potential for drug candidates to form chemically reactive metabolites that can covalently modify cellular macromolecules represents a rational strategy to reduce the risk of drug-induced idiosyncratic toxicity in humans. In this review, the approaches that are currently available for addressing this issue during the lead optimization phase of drug discovery, their limitations, and future scientific directions that have the potential to address these limitations are discussed.


Subject(s)
Biotransformation , Drug Design , Pharmaceutical Preparations/metabolism , Pharmacology/methods , Animals , Humans , Pharmacology/trends
18.
Curr Drug Metab ; 8(1): 59-77, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17266524

ABSTRACT

Cytochrome P450 (CYP) 2D6 is one of the most important drug metabolizing enzymes and the rationalization and prediction of potential CYP2D6 substrates is therefore advantageous in the discovery and development of new drugs. Experimentally, the active site of CYP2D6 can be probed by site directed mutagenesis studies. Such studies can be designed from structural models of enzyme-substrate complexes. Modeling approaches can subsequently be used to rationalize the observed effect of mutations on metabolism and inhibition. The current paper will present the construction, refinement and validation of the CYP2D6 homology model used in our laboratory for the prediction and rationalisation of CYP2D6 substrate metabolism and CYP2D6-ligand interactions. The model could explain reported site-directed mutagenesis data (for example, mutation of E216 and D301). Furthermore, based on the model, new CYP2D6 mutants were constructed and studied in our lab, and also for these mutants a rationalization of experimentally observed characteristics could be achieved (I106E, F120A, T309V, F483A). CYP2D6-substrate interaction fingerprint analysis of docked substrates in our homology model suggests that several other active site residues are probably interacting with ligands as well, opening the way for further mutagenesis studies. Our homology model was found to agree with most of the details of the recently solved substrate-free CYP2D6 crystal structure [Rowland et al. J. Biol. Chem. 2006, 281, 7614-7622]. Structural differences between the homology model and crystal structure were the same differences observed between substrate-free and substrate-bound structures of other CYPs, suggesting that these conformational changes are required upon substrate binding. The CYP2D6 crystal structure further validates our homology modeling approach and shows that computational chemistry is a useful and valuable tool to provide models for substrate-bound complexes of CYPs which give insight into CYP-ligand interactions. This information is essential for successful pre-experimental virtual screening, as well as accurate hypothesis generation for in vitro studies in drug discovery and development.


Subject(s)
Cytochrome P-450 CYP2D6/chemistry , Models, Molecular , Amino Acid Sequence , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Alignment , Structural Homology, Protein
19.
Drug Metab Dispos ; 34(8): 1367-75, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16698892

ABSTRACT

The pharmacokinetics and metabolism of 1-(4-((4-phenyl-5-trifluoromethyl-2-thienyl)methoxy)benzyl)azetidine-3-carboxylic acid (MRL-A), a selective agonist for the sphingosine-1-phosphate 1 (S1P1) receptor, were investigated in rats and dogs. In both species, more than 50% of the dose was excreted in bile. Specific to the rat, and observed in bile, were a taurine conjugate of MRL-A and a glucuronide conjugate of an azetidine lactam metabolite. In dogs, a smaller portion of the dose (54% of administered dose) was excreted intact in bile, and the major metabolites detected were an azetidine N-oxide of MRL-A and an acylglucuronide of an N-dealkylation product. This latter metabolite was also observed in rat bile. Stereoselective formation of the N-oxide isomer was observed in dogs, whereas the rat produced comparable amounts of both isomers. The formation of a unique glutathione adduct was observed in rat bile, which was proposed to occur via N-dealkylation, followed by reduction of the putative aldehyde product to form the alcohol, and dehydration of the alcohol to generate a reactive quinone methide intermediate. Incubation of a synthetic standard of this alcohol in rat microsomes fortified with reduced glutathione or rat hepatocytes resulted in formation of this unique glutathione adduct.


Subject(s)
Azetidines/pharmacokinetics , Glutathione/metabolism , Receptors, Lysosphingolipid/agonists , Thiophenes/pharmacokinetics , Administration, Oral , Animals , Azetidines/administration & dosage , Azetidines/urine , Bile/chemistry , Biotransformation , Dogs , Feces/chemistry , Injections, Intravenous , Intestinal Mucosa/metabolism , Male , Protein Binding , Rats , Rats, Sprague-Dawley , Species Specificity , Thiophenes/administration & dosage , Thiophenes/urine
20.
Arch Biochem Biophys ; 447(1): 53-8, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16466686

ABSTRACT

Recent reports have identified Phe120, Asp301, Thr309, and Glu216 as important residues in cytochrome P450 2D6 (CYP2D6) substrate binding and catalysis. Complementary homology models have located these amino acids within the binding pocket of CYP2D6 and in the present study we have used aryldiazenes to test these models and gain further insight in the role these amino acids have in maintaining the integrity of the active site cavity. When Phe120 was replaced to alanine, there was a significant increase in probe migration to pyrrole nitrogens C and D, in agreement with homology models which have located the phenyl side-chain of Phe120 above these two pyrrole rings. No changes in topology were observed with the D301Q mutant, supporting claims that in this mutant the electrostatic interactions with the B/C-loop are largely maintained and the loop retains its native orientation. The T309V mutation resulted in significant topological alteration suggesting that, in addition to its potential role in dioxygen activation, Thr309 plays an important structural role within the active site crevice. Replacement of Ile106 with Glu, engineered to cause electrostatic repulsion with Glu216, had a profound topological effect in the higher region within the active site cavity and impaired the catalytic activity towards CYP2D6 probe substrates.


Subject(s)
Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 CYP2D6/metabolism , Escherichia coli/enzymology , Models, Chemical , Models, Molecular , Amino Acid Substitution , Computer Simulation , Enzyme Activation , Escherichia coli/genetics , Humans , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...