Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 88(5): 053906, 2017 May.
Article in English | MEDLINE | ID: mdl-28571453

ABSTRACT

We present an automatic measurement platform that enables the characterization of nanodevices by electrical transport and optical spectroscopy as a function of the uniaxial stress. We provide insights into and detailed descriptions of the mechanical device, the substrate design and fabrication, and the instrument control software, which is provided under open-source license. The capability of the platform is demonstrated by characterizing the piezo-resistance of an InAs nanowire device using a combination of electrical transport and Raman spectroscopy. The advantages of this measurement platform are highlighted by comparison with state-of-the-art piezo-resistance measurements in InAs nanowires. We envision that the systematic application of this methodology will provide new insights into the physics of nanoscale devices and novel materials for electronics, and thus contribute to the assessment of the potential of strain as a technology booster for nanoscale electronics.

2.
Nanotechnology ; 21(43): 435202, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20890021

ABSTRACT

In this work we investigate doping by solid-state diffusion from a doped oxide layer, obtained by plasma-enhanced chemical vapor deposition (PECVD), as a means for selectively doping silicon nanowires (NWs). We demonstrate both n-type (phosphorous) and p-type (boron) doping up to concentrations of 10(20) cm(-3), and find that this doping mechanism is more efficient for NWs as opposed to planar substrates. We observe no diameter dependence in the range of 25 to 80 nm, which signifies that the NWs are uniformly doped. The drive-in temperature (800-950 °C) can be used to adjust the actual doping concentration in the range 2 × 10(18) to 10(20) cm(-3). Furthermore, we have fabricated NMOS and PMOS devices to show the versatility of this approach and the possibility of achieving segmented doping of NWs. The devices show high I(on)/I(off) ratios of around 10(7) and, especially for the PMOS, good saturation behavior and low hysteresis.

4.
Science ; 262(5138): 1425-7, 1993 Nov 26.
Article in English | MEDLINE | ID: mdl-17736824

ABSTRACT

The tip-surface region of a scanning tunneling microscope (STM) emits light when the energy of the tunneling electrons is sufficient to excite luminescent processes. These processes provide access to dynamic aspects of the local electronic structure that are not directly amenable to conventional STM experiments. From monolayer films of carbon-60 fullerenes on gold(110) surfaces, intense emission is observed when the STM tip is placed above an individual molecule. The diameter of this emission spot associated with carbon-60 is approximately 4 angstroms. These results demonstrate the highest spatial resolution of light emission to date with a scanning probe technique.

SELECTION OF CITATIONS
SEARCH DETAIL
...