Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Ann Clin Transl Neurol ; 1(3): 199-208, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25356398

ABSTRACT

OBJECTIVE: Mutations in leucine-rich repeat kinase 2 (LRRK2) pose a significant genetic risk in familial and sporadic Parkinson's disease (PD). R1441 mutation (R1441G/C) in its GTPase domain is found in familial PD. How LRRK2 interacts with synaptic proteins, and its role in dopamine (DA) homeostasis and synaptic vesicle recycling remain unclear. METHODS: To explore the pathogenic effects of LRRK2(R1441G) mutation on nigrostriatal synaptic nerve terminals and locomotor activity, we generated C57BL/6N mice with homozygous LRRK2(R1441G) knockin (KI) mutation, and examined for early changes in nigrostriatal region, striatal synaptosomal [(3)H]-DA uptake and locomotor activity after reserpine-induced DA depletion. RESULTS: Under normal conditions, mutant mice showed no differences, (1) in amount and morphology of nigrostriatal DA neurons and neurites, (2) tyrosine hydroxylase (TH), DA uptake transporter (DAT), vesicular monoamine transporter-2 (VMAT2) expression in striatum, (3) COX IV, LC3B, Beclin-1 expression in midbrain, (4) LRRK2 expression in total cell lysate from whole brain, (5) α-synuclein, ubiquitin, and tau protein immunostaining in midbrain, (6) locomotor activity, compared to wild-type controls. However, after a single intraperitoneal reserpine dose, striatal synaptosomes from young 3-month-old mutant mice demonstrated significantly lower DA uptake with impaired locomotor activity and significantly slower recovery from the effects of reserpine. INTERPRETATION: Although no abnormal phenotype was observed in mutant LRRK2(R1441G) mice, the KI mutation increases vulnerability to reserpine-induced striatal DA depletion and perturbed DA homeostasis resulting in presynaptic dysfunction and locomotor deficits with impaired recovery from reserpine. This subtle nigrostriatal synaptic vulnerability may reflect one of the earliest pathogenic processes in LRRK2-associated PD.

3.
PLoS One ; 9(5): e98037, 2014.
Article in English | MEDLINE | ID: mdl-24837491

ABSTRACT

Fulvestrant (ICI-182,780) has recently been shown to effectively suppress prostate cancer cell growth in vitro and in vivo. But it is unclear whether microRNAs play a role in regulating oncogene expression in fulvestrant-treated prostate cancer. Here, this study reports hsa-miR-765 as the first fulvestrant-driven, ERß-regulated miRNA exhibiting significant tumor suppressor activities like fulvestrant, against prostate cancer cell growth via blockage of cell-cycle progression at the G2/M transition, and cell migration and invasion possibly via reduction of filopodia/intense stress-fiber formation. Fulvestrant was shown to upregulate hsa-miR-765 expression through recruitment of ERß to the 5'-regulatory-region of hsa-miR-765. HMGA1, an oncogenic protein in prostate cancer, was identified as a downstream target of hsa-miR-765 and fulvestrant in cell-based experiments and a clinical study. Both the antiestrogen and the hsa-miR-765 mimic suppressed HMGA1 protein expression. In a neo-adjuvant study, levels of hsa-miR-765 were increased and HMGA1 expression was almost completely lost in prostate cancer specimens from patients treated with a single dose (250 mg) of fulvestrant 28 days before prostatectomy. These findings reveal a novel fulvestrant signaling cascade involving ERß-mediated transcriptional upregulation of hsa-miR-765 that suppresses HMGA1 protein expression as part of the mechanism underlying the tumor suppressor action of fulvestrant in prostate cancer.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Cell Movement , Cell Proliferation , Estradiol/analogs & derivatives , Estrogen Receptor Antagonists/pharmacology , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Antineoplastic Agents, Hormonal/therapeutic use , Cell Line, Tumor , Estradiol/pharmacology , Estradiol/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Estrogen Receptor beta/antagonists & inhibitors , Estrogen Receptor beta/metabolism , Fulvestrant , HMGA Proteins/genetics , HMGA Proteins/metabolism , Humans , Male , MicroRNAs/genetics , Neoplasm Invasiveness , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Up-Regulation
4.
Brain Behav ; 2(4): 468-78, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22950050

ABSTRACT

Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.

5.
PLoS One ; 7(2): e32810, 2012.
Article in English | MEDLINE | ID: mdl-22427795

ABSTRACT

Mitochondrial uncoupling protein-4 (UCP4) protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP(+)), but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01), with 20% greater proton leak than vector controls (p<0.01). Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05). Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05), associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05). ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis.


Subject(s)
Adenosine Triphosphate/metabolism , Electron Transport Complex II/metabolism , Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Adenosine Diphosphate/metabolism , Blotting, Western , Cell Line, Tumor , Cytochromes c/metabolism , Gene Expression , Humans , Membrane Potential, Mitochondrial , Membrane Transport Proteins/genetics , Microscopy, Electron, Transmission , Mitochondria/metabolism , Mitochondria/physiology , Mitochondria/ultrastructure , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Uncoupling Proteins , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , Oxygen Consumption , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...