Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neuroinflammation ; 21(1): 161, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915059

ABSTRACT

BACKGROUND: Pediatric acute transverse myelitis (ATM) accounts for 20-30% of children presenting with a first acquired demyelinating syndrome (ADS) and may be the first clinical presentation of a relapsing ADS such as multiple sclerosis (MS). B cells have been strongly implicated in the pathogenesis of adult MS. However, little is known about B cells in pediatric MS, and even less so in pediatric ATM. Our lab previously showed that plasmablasts (PB), the earliest B cell subtype producing antibody, are expanded in adult ATM, and that these PBs produce self-reactive antibodies that target neurons. The goal of this study was to examine PB frequency and phenotype, immunoglobulin selection, and B cell receptor reactivity in pediatric patients presenting with ATM to gain insight to B cell involvement in disease. METHODS: We compared the PB frequency and phenotype of 5 pediatric ATM patients and 10 pediatric healthy controls (HC) and compared them to previously reported adult ATM patients using cytometric data. We purified bulk IgG from the plasma samples and cloned 20 recombinant human antibodies (rhAbs) from individual PBs isolated from the blood. Plasma-derived IgG and rhAb autoreactivity was measured by mean fluorescence intensity (MFI) in neurons and astrocytes of murine brain or spinal cord and primary human astrocytes. We determined the potential impact of these rhAbs on astrocyte health by measuring stress and apoptotic response. RESULTS: We found that pediatric ATM patients had a reduced frequency of peripheral blood PB. Serum IgG autoreactivity to neurons in EAE spinal cord was similar in the pediatric ATM patients and HC. However, serum IgG autoreactivity to astrocytes in EAE spinal cord was reduced in pediatric ATM patients compared to pediatric HC. Astrocyte-binding strength of rhAbs cloned from PBs was dependent on somatic hypermutation accumulation in the pediatric ATM cohort, but not HC. A similar observation in predilection for astrocyte binding over neuron binding of individual antibodies cloned from PBs was made in EAE brain tissue. Finally, exposure of human primary astrocytes to these astrocyte-binding antibodies increased astrocytic stress but did not lead to apoptosis. CONCLUSIONS: Discordance in humoral immune responses to astrocytes may distinguish pediatric ATM from HC.


Subject(s)
Astrocytes , Myelitis, Transverse , Humans , Myelitis, Transverse/immunology , Animals , Female , Astrocytes/metabolism , Astrocytes/immunology , Child , Mice , Male , Adolescent , Plasma Cells/immunology , Plasma Cells/metabolism , Autoantibodies/immunology , Autoantibodies/blood , Mice, Inbred C57BL , Cells, Cultured , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Spinal Cord/metabolism , Spinal Cord/immunology , Spinal Cord/pathology
2.
J Immunol ; 211(9): 1332-1339, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37712756

ABSTRACT

Pediatric and adult autoimmune encephalitis (AE) are often associated with Abs to the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). Very little is known regarding the cerebrospinal fluid humoral immune profile and Ab genetics associated with pediatric anti-NMDAR-AE. Using a combination of cellular, molecular, and immunogenetics tools, we collected cerebrospinal fluid from pediatric subjects and generated 1) flow cytometry data to calculate the frequency of B cell subtypes in the cerebrospinal fluid of pediatric subjects with anti-NMDAR-AE and controls, 2) a panel of recombinant human Abs from a pediatric case of anti-NMDAR-AE that was refractory to treatment, and 3) a detailed analysis of the Ab genes that bound the NR1 subunit of the NMDAR. Ag-experienced B cells including memory cells, plasmablasts, and Ab-secreting cells were expanded in the pediatric anti-NMDAR-AE cohort, but not in the controls. These Ag-experienced B cells in the cerebrospinal fluid of a pediatric case of NMDAR-AE that was refractory to treatment had expanded use of variable H chain family 2 (VH2) genes with high somatic hypermutation that all bound to the NR1 subunit of the NMDAR. A CDR3 motif was identified in this refractory case that likely drove early stage activation and expansion of naive B cells to Ab-secreting cells, facilitating autoimmunity associated with pediatric anti-NMDAR-AE through the production of Abs that bind NR1. These features of humoral immune responses in the cerebrospinal fluid of pediatric anti-NMDAR-AE patients may be relevant for clinical diagnosis and treatment.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Hashimoto Disease , Adult , Humans , Child , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/cerebrospinal fluid , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , B-Lymphocytes , Receptors, N-Methyl-D-Aspartate , Autoantibodies
3.
Molecules ; 26(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406592

ABSTRACT

Twelve new azole compounds were synthesized through an ene reaction involving methylidene heterocycles and phenylmaleimide, producing four oxazoles, five thiazoles, and one pyridine derivative, and ethyl glyoxal for an oxazole and a thiazole compound. The twelve azoles have a stereogenic center in their structure. Hence, a method to separate the enantiomeric pairs, must be provided if any further study of chemical and pharmacological importance of these compounds is to be accomplished. Six chiral stationary phases were assayed: four were based on macrocyclic glycopeptide selectors and two on linear carbohydrates, i.e., derivatized maltodextrin and amylose. The enantiomers of the entire set of new chiral azole compounds were separated using the three different mobile phase elution modes: normal phase, polar organic, and reversed phase. The most effective chiral stationary phase was the MaltoShell column, which was able to separate ten of the twelve compounds in one elution mode or another. Structural similarities in the newly synthesized oxazoles provided some insights into possible chiral recognition mechanisms.


Subject(s)
Amylose/chemistry , Azoles/chemistry , Azoles/isolation & purification , Glycopeptides/chemistry , Polysaccharides/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...