Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 598: 160-167, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28441594

ABSTRACT

This study focuses on the effects of two clay colloids (kaolinite, KGa-1b and montmorillonite, STx-1b) and titanium dioxide (TiO2) nanoparticles (NPs) on human adenovirus transport and retention in water saturated porous media at three different pore water velocities (0.38, 0.74, and 1.21cm/min). Transport and cotransport experiments were performed in 30-cm long laboratory columns packed with clean glass beads with 2mm diameter. The experimental results suggested that the presence of KGa-1b, STx-1b and TiO2 NPs increased human adenovirus inactivation and attachment onto the solid matrix, due to the additional attachment sites available. Retention by the packed column was found to be highest (up to 99%) in the presence of TiO2 NPs at the highest pore water velocity, and lowest in the presence of KGa-1b. The experimental results suggested that adenoviruses would undergo substantial aggregation or heteroaggregation during cotransport. However, no distinct relationships between mass recoveries and water velocity could be established from the experimental cotransport data. Note that for the cotransport experiments, collision efficiency values were shown to be higher for the higher flow rate examined in this study.


Subject(s)
Adenoviruses, Human , Aluminum Silicates , Colloids , Metal Nanoparticles , Titanium , Clay , Porosity
2.
Sci Total Environ ; 517: 86-95, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25723960

ABSTRACT

Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor ΦΧ174 is recommended as a suitable model for adenovirus.


Subject(s)
Adenoviruses, Human/chemistry , Bentonite/chemistry , Coliphages/chemistry , Kaolin/chemistry , Water Pollution , Adsorption , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...