Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 75(12): 1004-1011, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34920768

ABSTRACT

This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.


Subject(s)
Fluorescent Dyes , Membrane Potential, Mitochondrial , Coloring Agents , Microscopy, Fluorescence
2.
Front Mol Biosci ; 8: 740408, 2021.
Article in English | MEDLINE | ID: mdl-34859048

ABSTRACT

The fusion pore is the initial narrow connection that forms between fusing membranes. During vesicular release of hormones or neurotransmitters, the nanometer-sized fusion pore may open-close repeatedly (flicker) before resealing or dilating irreversibly, leading to kiss-and-run or full-fusion events, respectively. Pore dynamics govern vesicle cargo release and the mode of vesicle recycling, but the mechanisms are poorly understood. This is partly due to a lack of reconstituted assays that combine single-pore sensitivity and high time resolution. Total internal reflection fluorescence (TIRF) microscopy offers unique advantages for characterizing single membrane fusion events, but signals depend on effects that are difficult to disentangle, including the polarization of the excitation electric field, vesicle size, photobleaching, orientation of the excitation dipoles of the fluorophores with respect to the membrane, and the evanescent field depth. Commercial TIRF microscopes do not allow control of excitation polarization, further complicating analysis. To overcome these challenges, we built a polarization-controlled total internal reflection fluorescence (pTIRF) microscope and monitored fusion of proteoliposomes with planar lipid bilayers with single molecule sensitivity and ∼15 ms temporal resolution. Using pTIRF microscopy, we detected docking and fusion of fluorescently labeled small unilamellar vesicles, reconstituted with exocytotic/neuronal v-SNARE proteins (vSUVs), with a supported bilayer containing the cognate t-SNAREs (tSBL). By varying the excitation polarization angle, we were able to identify a dye-dependent optimal polarization at which the fluorescence increase upon fusion was maximal, facilitating event detection and analysis of lipid transfer kinetics. An improved algorithm allowed us to estimate the size of the fusing vSUV and the fusion pore openness (the fraction of time the pore is open) for every event. For most events, lipid transfer was much slower than expected for diffusion through an open pore, suggesting that fusion pore flickering limits lipid release. We find a weak correlation between fusion pore openness and vesicle area. The approach can be used to study mechanisms governing fusion pore dynamics in a wide range of membrane fusion processes.

3.
Langmuir ; 35(26): 8748-8757, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31244250

ABSTRACT

Horizontal black lipid membranes (BLMs) enable optical microscopy to be combined with the electrophysiological measurements for studying ion channels, peptide pores, and ionophores. However, a careful literature review reveals that simultaneous fluorescence and electrical recordings in horizontal BLMs have been rarely reported for an unclear reason, whereas many works employ bright-field microscopy instead of fluorescence microscopy or perform fluorescence imaging and electrical measurements one after another separately without truly exploiting the advantage of the combined setup. In this work, the major causes related to the simultaneous electrical and fluorescence recordings in horizontal BLMs are identified, and several solutions to counteract the issue are also proposed.

4.
J Am Chem Soc ; 141(2): 810-814, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30618243

ABSTRACT

In this Communication, we introduce transmembrane anion transport with pnictogen-bonding compounds and compare their characteristics with chalcogen- and halogen-bonding analogues. Tellurium-centered chalcogen bonds are at least as active as antimony-centered pnictogen bonds, whereas iodine-centered halogen bonds are 3 orders of magnitude less active. Irregular voltage-dependent single-channel currents, high gating charges, and efficient dye leakage support for the formation of bulky, membrane-disruptive supramolecular amphiphiles due to "too strong" binding of anions to tris(perfluorophenyl)stibanes. In contrast, the chalcogen-bonding bis(perfluorophenyl)tellanes do not cause leakage and excel as carriers with nanomolar activity, with P(Cl/Na) = 10.4 for anion/cation selectivity and P(Cl/NO3) = 4.5 for anion selectivity. The selectivities are lower with pnictogen-bonding carriers because their membrane-disturbing 3D structure also affects weaker binders ( P(Cl/Na) = 2.1, P(Cl/NO3) = 2.5). Their 2D structure, directionality, hydrophobicity, and support from proximal anion-π interactions are suggested to contribute to the unique power of chalcogen bonds to transport anions across lipid bilayer membranes.

5.
Nanoscale ; 10(3): 1090-1098, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29271448

ABSTRACT

We report a platform based on lateral nano-black lipid membranes (nano-BLMs), where electrical measurements and fluorescence microscopy setup are combined, for the calibration of di-4-ANEPPS, a common voltage sensitive dye (VSD). The advantage of this setup is (1) its flexibility in the choice of lipids and applied voltages, (2) its high stability that enables a high voltage (500 mV) application and long-time measurements and (3) its fluorescence microscopy readout, which can be directly correlated with other fluorescence microscopy experiments using VSDs (e.g. membrane potential measurements in living cells). Using this setup, we observed that the calibration curve of di-4-ANEPPS is strongly dependent on the net electric charge of the lipids. The developed setup can be used to calibrate VSDs in different lipid environments in order to better understand their fundamental voltage-sensing mechanism in the future.

6.
J Phys Chem B ; 120(14): 3511-5, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27021441

ABSTRACT

Polydiacetylene (PDA) is a conductive polymer that has mechanochromism. When the polymer is exposed to mechanical stresses, change in temperature (thermochromism), pH (ionochromism), and so forth, the structural perturbation can be seen by the change in its color. Although it presents interesting electrical and optical properties, the relationship between these signals has rarely been investigated. We studied the correlation between the electrical conductivity and the absorption spectra of PDA. Upon UV irradiation, PDA absorption spectra presented a blue shift, which coincided with the decrease in the electrical conductivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...