Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Oncol (Dordr) ; 39(3): 279-86, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26902080

ABSTRACT

BACKGROUND: Insulinomas are the most common type of neuroendocrine (NE) pancreatic islet tumors. Patients with insulinomas may develop complications associated with hyperinsulinemia. To increase the treatment options for insulinoma patients, we have tested a conditionally replicating adenovirus that has been engineered in such a way that it can specifically express therapeutic genes in NE tumors. METHODS: We used a promoter-specific adenoviral vector delivery system that is regulated by an INSM1 (insulinoma-associated-1) promoter, which is silent in normal adult tissues but active in developing NE cells and tumors. Through a series of modifications, using an insulator (HS4) and neuron-restrictive silencer elements (NRSEs), an oncolytic adenoviral vector was generated that retains tumor specificity and drives the expression of a mutated adenovirus E1A gene (Δ24E1A) and the herpes simplex virus thymidine kinase (HSV-tk) gene. The efficacy of this vector was tested in insulinoma-derived MIN, RIN, ßTC-1 and pancreatic (Panc-1) cells using in vitro cell survival and in vivo tumor growth assays. RESULTS: Using in vitro insulinoma-derived cell lines and an in vivo subcutaneous mouse tumor model we found that the INSM1 promoter-driven viruses were able to replicate specifically in INSM1-positive cells. INSM1-specific HSV-tk expression in combination with ganciclovir treatment resulted in dose-dependent tumor cell killing, leaving INSM1-negative cells unharmed. When we combined the INSM1-promoter driven HSV-tk with Δ24E1A and INSM1p-HSV-tk (K5) viruses, we found that the co-infected insulinoma-derived cells expressed higher levels of HSV-tk and exhibited more efficient tumor suppression than cells infected with INSM1p-HSV-tk virus alone. CONCLUSIONS: INSM1 promoter-driven conditionally replicating adenoviruses may serve as a new tool for the treatment of insulinoma and may provide clinicians with additional options to combat this disease.


Subject(s)
Genetic Therapy/methods , Insulinoma , Oncolytic Virotherapy/methods , Pancreatic Neoplasms , Promoter Regions, Genetic , Repressor Proteins/genetics , Adenoviridae , Animals , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Line, Tumor , Ganciclovir/pharmacology , Genetic Vectors , Humans , Mice , Thymidine Kinase/genetics , Xenograft Model Antitumor Assays
2.
Int J Oncol ; 48(1): 173-80, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26530405

ABSTRACT

Accurate detection of neuroendocrine (NE) tumors is critically important for better prognosis and treatment outcomes in patients. To demonstrate the efficacy of using an adenoviral vector for the detection of NE tumors, we have constructed a pair of adenoviral vectors which, in combination, can conditionally replicate and release Gaussia luciferase into the circulation after infecting the NE tumors. The expression of these two vectors is regulated upstream by an INSM1-promoter (insulinoma-associated-1) that is specifically active in NE tumors and developing NE tissues, but silenced in normal adult tissues. In order to retain the tumor-specificity of the INSM1 promoter, we have modified the promoter using the core insulator sequence from the chicken ß-globin HS4 insulator and the neuronal restrictive silencing element (NRSE). This modified INSM1-promoter can retain NE tumor specificity in an adenoviral construct while driving a mutated adenovirus E1A gene (∆24E1A), the Metridia, or Gaussia luciferase gene. The in vitro cell line and mouse xenograft human tumor studies revealed the NE specificity of the INSM1-promoter in NE lung cancer, neuroblastoma, medulloblastoma, retinoblastoma, and insulinoma. When we combined the INSM1-promoter driven Gaussia luciferase with ∆24E1A, the co-infected NE tumor secreted higher levels of Gaussia luciferase as compared to the INSM1p-Gaussia virus alone. In a mouse subcutaneous xenograft tumor model, the combination viruses secreted detectable level of Gaussia luciferase after infecting an INSM1-positive NE lung tumor for ≥12 days. Therefore, the INSM1-promoter specific conditional replicating adenovirus represents a sensitive diagnostic tool to aid clinicians in the detection of NE tumors.


Subject(s)
Genetic Therapy , Luciferases/genetics , Neuroendocrine Tumors/genetics , Repressor Proteins/genetics , Adenoviridae/genetics , Animals , Carcinoma, Neuroendocrine , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Genetic Vectors , Humans , Luciferases/biosynthesis , Mice , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/pathology , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...