Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 257: 115496, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37224762

ABSTRACT

An efficient synthesis method was developed for furoxan/1,2,4-triazole hybrids 5a-k from methyl 5-(halomethyl)-1-aryl-1H-1,2,4-triazole-3-carboxylates 1 through two-steps reaction including hydrolyzation and esterification. All of the furoxan/1,2,4-triazole hybrid derivatives were characterized by spectroscopy. On the other hand, the influence of newly synthesized multi-substituted 1,2,4-triazoles on the exogenous NO release ability, in vitro and in vivo anti-inflammatory activity, and in silico predictions were experimentally evaluated. Based on the exogenous NO release ability study and SAR studies of in vitro anti-inflammatory activity, all of compounds 5a-k exhibited slightly NO release ability and potential anti-inflammatory activity on LPS-induced RAW264.7 cells (IC50 = 5.74-15.3 µM) compared to Celecoxib (IC50 = 16.5 µM) and Indomethacin (IC50 = 56.8 µM). Furthermore, compounds 5a-k were also subjected to in vitro COX-1/COX-2 inhibition assays. Particularly, compound 5f exhibited extraordinary COX-2 inhibition (IC50 = 0.0455 µM) and selectivity (SI = 209). In addition, compound 5f was also examined in vivo pro-inflammatory cytokine productions and gastric safety and possessed the better inhibition of cytokine and safety compared with Indomethacin at the same concentration. Through the molecular modeling and in silico physicochemical and pharmacokinetic properties prediction, compound 5f was stabilized in COX-2 active binding site and possessed the fundamental strong H-bond interaction with Arg499 to form the significant physicochemical and pharmacological properties as a candidate drug. Following the in vitro, in vivo, and in silico study results, compound 5f demonstrated to be a potential anti-inflammatory agent and had comparable effects with Celecoxib.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Anti-Inflammatory Agents , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Celecoxib , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Triazoles/chemistry , Indomethacin , Cytokines , Cyclooxygenase 2 Inhibitors/pharmacology , Molecular Structure
2.
Curr Med Chem ; 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35702778

ABSTRACT

BACKGROUND: Type-2 diabetes is a chronic progressive metabolic disease resulting in severe vascular complications and mortality risk. Recently, DPP-4 inhibitors are conceived as a favorable class of agents for the treatment of type 2 diabetes due to the minimal side effects. METHODS: Sitagliptin is the first medicine approved for DPP-4 inhibitor. Its structure involved three fragments: 2,4,5-triflorophenyl fragment pharmacophore, enantiomerically ß-amino carbonyl linker, and tetrahydrotriazolopyridine. Herein, we are drawn to the possibility of substituting tetrahydrotriazolopyridine motif present in Sitagliptin with a series of new fused pyrazolopyrimidine bicyclic fragment to investigate potency and safety. RESULTS: Two series of fused 6-(aminomethyl)pyrazolopyrimidine and 6-(hydroxymethyl)pyrazolopyrimidine derivatives containing ß-amino ester or amide as linkers were successfully designed for the new DPP-4 inhibitors. Most fused 6-methylpyrazolopyrimidines were evaluated against DPP-4 inhibition and selectivity capacity. Based on research study, ß-amino carbonyl fused 6-(hydroxymethyl)pyrazolopyrimidine possesses the significant DPP-4 inhibition (IC50 ≤ 59.8 nM) and presents similar with Sitagliptin (IC50 = 28 nM). Particularly, they had satisfactory selectivity over DPP-8 and DPP-9, except for QPP. CONCLUSION: ß-Amino esters and amides fused 6-(hydroxymethyl)pyrazolopyrimidine were developed as the new DPP-4 inhibitors. Those compounds with a methyl group or hydrogen in N-1 position and methyl substituted group in C-3 of pyrazolopyrimidine moiety showed better potent DPP-4 inhibition (IC50 = 21.4-59.8 nM). Furthermore, they had satisfactory selectivity over DPP-8 and DPP-9 Finally, the docking results revealed that compound 9n was stabilized at DPP-4 active site and would be a potential lead drug.

3.
Bioorg Chem ; 126: 105881, 2022 09.
Article in English | MEDLINE | ID: mdl-35636127

ABSTRACT

A series of genipin derivatives included tricyclic cyclopentaimidazopyridine, cyclopentapyridopyrimidine, octahydrocyclopentapyridodiazepine, and tetracyclic decahydrobenzoimidazocyclopentapyridine were synthesized and developed as anti-inflammatory agents. All of them were tested against NO production in LPS-induced RAW264.7 cells. Based on IC50 data and the SAR study, we found that tricyclic cyclopentaimidazopyridines 3d-f and 7-9 presented the better inhibitory activities (≦ 28.1 µM) in comparison with the reference standard Indomethacin (166 µM). On the other hand, all of them showed inactivity for in vitro cyclooxygenase COX-2 inhibition assays and compounds 8 and 9 possessed the cell toxity. To explore the further anti-inflammatory mechanism, Western blot analysis was carried out. Furthermore, compound 3d shown better bioactivity than Indomethacin. The suppression of NF-κB signal pathway by compound 3d was also determined. To sum-up, compound 3d would be the potential anti-inflammatory lead compound.


Subject(s)
Iridoids , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/pharmacology , Cyclooxygenase 2/metabolism , Indomethacin , Iridoids/pharmacology , Lipopolysaccharides/pharmacology , Mice , Nitric Oxide/metabolism , RAW 264.7 Cells
4.
Molecules ; 26(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068439

ABSTRACT

N-Aminophthalimides and phthalazine 1,4-diones were synthesized from isobenzofuran-1,3-dione, isoindoline-1,3-dione, furo [3,4-b] pyrazine-5,7-dione, or 1H-pyrrolo [3,4-c] pyridine-1,3-dione with monohydrate hydrazine to carry out the 5-exo or 6-endo nitrogen cyclization under the different reaction conditions. Based on the control experimental results, 6-endo thermodynamic hydrohydrazination and kinetical 5-exo cyclization reactions were individually selective formation. Subsequently, Vilsmeier amidination derivatization was successfully developed to probe the structural divergence between N-aminophthalimide 2 and phthalazine 1,4-dione 3. On the other hand, the best tautomerization of N-aminophthalimide to diazinone was also determined under acetic acid mediated solution.

5.
Bioorg Chem ; 114: 105049, 2021 09.
Article in English | MEDLINE | ID: mdl-34147879

ABSTRACT

Through modification of the skeleton of Sitagliptin and Vildagliptin, we successfully synthesized and built-up four series of 1,2,4-triazole derivatives, containing N,O-disubstituted glycolamide, N,N'-disubstituted glycinamide, ß-amino ester, and ß-amino amide as linkers, for the development of new dipeptidyl peptidase 4 (DPP-4) inhibitors. The synthetic strategy for glycolamides or glycinamides involved convenient two-steps reaction: functionalized transformation of 2-chloro-N-(2,4,5-triflurophenyl)acetamide 9 (hydroxylation or amination) and esterification or amidation of 1,2,4-triazole-3-carboxylic acid. On the other hand, the one-pot synthesis procedure, including substitution and deprotection, was developed for the preparation of ß-amino carbonyl 1,2,4-triazoles from (1H-1,2,4-triazol-3-yl)methanol 12 or (1H-1,2,4-triazol-3-yl)methanamine 13 and Boc-(R)-3-amino-4-(2,4,5-trifluoro-phenyl)-butyric acid 14. All of glycolamides, glycinamides, and ß-amino carbonyl 1,2,4-triazoles were also evaluated against DPP-4 inhibitory activity. Based on the SAR study of DPP-4 inhibitory capacity, ß-amino ester 5n and ß-amino amide 1,2,4-triazoles 6d and 6p possessed the significant inhibition of DPP-4 (IC50 < 51.0 nM), particularly for compound 6d (IC50 = 34.4 nM). The selectivity evaluation indicated compound 5n and 6p had excellent selectivity over QPP, DPP-8, and DPP-9. In addition, the docking results revealed compounds 5n and 6p provided stronger π-π stacking interaction with residue Phe357 than 1,5-disubstituted 1,2,4-triazole 6d and Sitagliptin 1. In summary, compounds 5n and 6p could be promising lead compounds for further development of DPP-4 inhibitor.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Drug Design , Glycine/analogs & derivatives , Glycolates/pharmacology , Triazoles/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dose-Response Relationship, Drug , Glycine/chemical synthesis , Glycine/chemistry , Glycine/pharmacology , Glycolates/chemical synthesis , Glycolates/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
6.
Bioorg Chem ; 104: 104333, 2020 11.
Article in English | MEDLINE | ID: mdl-33142408

ABSTRACT

A new method was developed for synthesis of 1,2,4-triazole-3-carboxylates 5a-p and 6 from nitrilimines 3a-p through amination and heterocyclization two-steps reactions. All of 1,2,4-triazole-3-carboxylates 5 and 6 were characterized by spectroscopy technique. Based on the SAR study of anti-inflammation activity, most of these compounds showed potential anti-inflammatory activity on NO inhibition in LPS-induced RAW 264.7 cells (IC50 < 7.0 µM) compared with Celecoxib and Indomethacin. Several potential compounds 5b-h, 5j, 5l, 5n, and 5o were subjected to in vitro cyclooxygenase COX-1/COX-2 inhibition assays. Compound 5d showed extraordinary COX-2 inhibition (IC50 = 17.9 nM) and the best selectivity (COX-1/COX-2 = 1080). Furthermore, 5 mg/kg compound 5d exhibited better in vivo anti-inflammation and gastric protection results compared to 10 mg/kg Indomethacin. Docking experiments of 5d into COX-2 binding pocket have been evaluated. Following the bioactivities experimental data, the potential drug candidate 5d, significantly exhibited better anti-inflammatory effect than Indomethacin.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Carboxylic Acids/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Drug Design , Molecular Docking Simulation , Triazoles/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carboxylic Acids/chemical synthesis , Carboxylic Acids/chemistry , Carrageenan , Cell Survival/drug effects , Cells, Cultured , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/metabolism , Edema/pathology , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred ICR , Models, Molecular , Molecular Structure , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , RAW 264.7 Cells , Recombinant Proteins/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
7.
Bioorg Chem ; 104: 104299, 2020 11.
Article in English | MEDLINE | ID: mdl-33002729

ABSTRACT

An efficient one-flask cascade method for synthesis of the multi-substituted 1,2,4-triazoles via chlorotrimethylsilane as a promoter was developed. Firstly, nitrilimines were transformed to hydrazonamides as intermediate in high yield by treatment with commercially available hexamethyldisilazane. Subsequently, the mixture was added with corresponding acyl chloride and heated in the presence of pyridine to give the corresponding multi-substituted 1,2,4-triazoles via chlorotrimethylsilane promoted heterocyclization reaction. The utility of method was demonstrated to synthesize CB1 ligands including Rimonabant analogue 4c and LH-21 3 for modeling study. All synthesized compounds were subjected to the cAMP functional assay of CB1/CB2 receptor. Especially, compound 4g enhanced the reversal of cAMP reduction by CP59440 than LH-21 and Rimonabant analogue in CHO-hCB1 cells. In addition, the docking results showed compound 4g fits the best position with CB1 receptor. However, the ability to penetrate brain-blood barrier of compound 4g is similar with Rimonabant in MDCK-mdr1 permeability assay, which might cause CNS side effect. This study still provides the basis for further development of a potent and specific CB1 antagonist.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Imines/chemistry , Rimonabant/chemical synthesis , Triazoles/chemical synthesis , Trimethylsilyl Compounds/chemistry , Animals , CHO Cells , Cells, Cultured , Cricetulus , Dogs , HEK293 Cells , Heterocyclic Compounds/chemistry , Humans , Models, Molecular , Molecular Structure , Rimonabant/chemistry , Triazoles/chemistry
8.
Molecules ; 25(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455824

ABSTRACT

The newly designed luminol structures of pyrazolopyridopyridazine diones and N-aminopyrazolopyrrolopyridine diones were synthesized from versatile 1,3-diaryfuropyrazolopyridine-6,8-diones, 1,3-diarylpyrazolopyrrolopyridine-6,8-diones, or 1,3-diaryl-7-methylpyrazolopyrrolopyridine-6,8-diones with hydrazine monohydrate. Photoluminescent and solvatofluorism properties containing UV-Vis absorption, emission spectra, and quantum yield (Φf) study of pyrazolopyridopyridazine diones and N-aminopyrazolopyrrolopyridine diones were also studied. Generally, most of pyrazolopyrrolopyridine-6,8-diones 6 exhibited the significant fluorescence intensity and the substituent effect when compared with N-aminopyrazolopyrrolopyridine diones, particularly for 6c and 6j with a m-chloro group. Additionally, the fluorescence intensity of 6j was significantly promoted due to the suitable conjugation conformation. Based on the quantum yield (Φf) study, the value of compound 6j (0.140) with planar structural skeletal was similar to that of standard luminol (1, 0.175).


Subject(s)
Hydrazines/chemistry , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis , Pyridones/chemical synthesis , Fluorescence , Luminol/chemistry , Pyrazoles/chemistry , Pyridines/chemistry
9.
J Org Chem ; 84(24): 16157-16170, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31736306

ABSTRACT

A convenient and efficient one-pot acid-promoted synthesis of 6-aminopyrazolo[3,4-d]pyrimidine has been developed by treatment of 1H-pyrazol-5-yl-N,N-dimethylformamidines or 5-amino-1H-pyrazole-4-carbaldehydes with cyanamide (NH2C≡N) in an acid-mediated solution. This synthetic route involves four steps of deprotection, imination, the key acid-promoted heterocyclization, and aromatization. On the basis of optimized studies, methanesulfonylchloride is considered to be the best solvent. Furthermore, the microwave-assisted synthetic technique was also carried out to improve the major product 6-aminopyrazolo[3,4-d]pyrimidines in this method. Moreover, our proposed mechanism was confirmed in this study, which demonstrates that N-[(5-amino-1,3-diaryl-1H-pyrazol-4-yl)methylene]cyanamide is the intermediate.

SELECTION OF CITATIONS
SEARCH DETAIL
...