Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Bionics Biomech ; 2024: 1150076, 2024.
Article in English | MEDLINE | ID: mdl-38361980

ABSTRACT

Step length estimation (SLE) is the core process for pedestrian dead reckoning (PDR) for indoor positioning. Original SLE requires accurate estimations of pedestrian characteristic parameter (PCP) by the linear update, which may cause large distance errors. To enhance SLE, this paper proposes the Sage-Husa adaptive Kalman filtering-based PCP update (SHAKF-PU) mechanism for enhancing SLE in PDR. SHAKF has the characteristic of predicting the trend of historical data; the estimated PCP is closer to the true value than the linear update. Since different kinds of pedestrians can influence the PCP estimation, adaptive PCP estimation is required. Compared with the classical Kalman filter, SHAKF updates its Q and R parameters in each update period so the estimated PCP can be more accurate than other existing methods. The experimental results show that SHAKF-PU reduces the error by 24.86% compared to the linear update, and thus, the SHAKF-PU enhances the indoor positioning accuracy for PDR.

2.
Sensors (Basel) ; 23(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37837104

ABSTRACT

As indoor positioning has been widely utilized for many applications of the Internet of Things, the Received Signal Strength Indication (RSSI) fingerprint has become a common approach to distance estimation because of its simple and economical design. The combination of a Gaussian filter and a Kalman filter is a common way of establishing an RSSI fingerprint. However, the distributions of RSSI values can be arbitrary distributions instead of Gaussian distributions. Thus, we propose a Fouriertransform Fuzzyc-means Kalmanfilter (FFK) based RSSI filtering mechanism to establish a stable RSSI fingerprint value for distance estimation in indoor positioning. FFK is the first RSSI filtering mechanism adopting the Fourier transform to abstract stable RSSI values from the low-frequency domain. Fuzzy C-Means (FCM) can identify the major Line of Sight (LOS) cluster by its fuzzy membership design in the arbitrary RSSI distributions, and thus FCM becomes a better choice than the Gaussian filter for capturing LOS RSSI values. The Kalman filter summarizes the fluctuating LOS RSSI values as the stable latest RSSI value for the distance estimation. Experiment results from a realistic environment show that FFK achieves better distance estimation accuracy than the Gaussian filter, the Kalman filter, and their combination, which are used by the related works.

3.
J Med Internet Res ; 24(1): e33399, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34951863

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, personal health records (PHRs) have enabled patients to monitor and manage their medical data without visiting hospitals and, consequently, minimize their infection risk. Taiwan's National Health Insurance Administration (NHIA) launched the My Health Bank (MHB) service, a national PHR system through which insured individuals to access their cross-hospital medical data. Furthermore, in 2019, the NHIA released the MHB software development kit (SDK), which enables development of mobile apps with which insured individuals can retrieve their MHB data. However, the NHIA MHB service has its limitations, and the participation rate among insured individuals is low. OBJECTIVE: We aimed to integrate the MHB SDK with our developed blockchain-enabled PHR mobile app, which enables patients to access, store, and manage their cross-hospital PHR data. We also collected and analyzed the app's log data to examine patients' MHB use during the COVID-19 pandemic. METHODS: We integrated our existing blockchain-enabled mobile app with the MHB SDK to enable NHIA MHB data retrieval. The app utilizes blockchain technology to encrypt the downloaded NHIA MHB data. Existing and new indexes can be synchronized between the app and blockchain nodes, and high security can be achieved for PHR management. Finally, we analyzed the app's access logs to compare patients' activities during high and low COVID-19 infection periods. RESULTS: We successfully integrated the MHB SDK into our mobile app, thereby enabling patients to retrieve their cross-hospital medical data, particularly those related to COVID-19 rapid and polymerase chain reaction testing and vaccination information and progress. We retrospectively collected the app's log data for the period of July 2019 to June 2021. From January 2020, the preliminary results revealed a steady increase in the number of people who applied to create a blockchain account for access to their medical data and the number of app subscribers among patients who visited the outpatient department (OPD) and emergency department (ED). Notably, for patients who visited the OPD and ED, the peak proportions with respect to the use of the app for OPD and ED notes and laboratory test results also increased year by year. The highest proportions were 52.40% for ED notes in June 2021, 88.10% for ED laboratory test reports in May 2021, 34.61% for OPD notes in June 2021, and 41.87% for OPD laboratory test reports in June 2021. These peaks coincided with Taiwan's local COVID-19 outbreak lasting from May to June 2021. CONCLUSIONS: This study developed a blockchain-enabled mobile app, which can periodically retrieve and integrate PHRs from the NHIA MHB's cross-hospital data and the investigated hospital's self-pay medical data. Analysis of users' access logs revealed that the COVID-19 pandemic substantially increased individuals' use of PHRs and their health awareness with respect to COVID-19 prevention.


Subject(s)
COVID-19 , Health Records, Personal , Mobile Applications , Humans , Pandemics , Retrospective Studies , SARS-CoV-2 , Taiwan/epidemiology
4.
Article in English | MEDLINE | ID: mdl-27258297

ABSTRACT

In wireless networks, low-power Zigbee is an excellent network solution for wireless medical monitoring systems. Medical monitoring generally involves transmission of a large amount of data and easily causes bottleneck problems. Although Zigbee's AODV mesh routing provides extensible multi-hop data transmission to extend network coverage, it originally does not, and needs to support some form of load balancing mechanism to avoid bottlenecks. To guarantee a more reliable multi-hop data transmission for life-critical medical applications, we have developed a multipath solution, called Load-Balanced Multipath Routing (LBMR) to replace Zigbee's routing mechanism. LBMR consists of three main parts: Layer Routing Construction (LRC), a Load Estimation Algorithm (LEA), and a Route Maintenance (RM) mechanism. LRC assigns nodes into different layers based on the node's distance to the medical data gateway. Nodes can have multiple next-hops delivering medical data toward the gateway. All neighboring layer-nodes exchange flow information containing current load, which is the used by the LEA to estimate future load of next-hops to the gateway. With LBMR, nodes can choose the neighbors with the least load as the next-hops and thus can achieve load balancing and avoid bottlenecks. Furthermore, RM can detect route failures in real-time and perform route redirection to ensure routing robustness. Since LRC and LEA prevent bottlenecks while RM ensures routing fault tolerance, LBMR provides a highly reliable routing service for medical monitoring. To evaluate these accomplishments, we compare LBMR with Zigbee's AODV and another multipath protocol, AOMDV. The simulation results demonstrate LBMR achieves better load balancing, less unreachable nodes, and better packet delivery ratio than either AODV or AOMDV.


Subject(s)
Computer Communication Networks , Monitoring, Physiologic/instrumentation , Wireless Technology , Algorithms , Electrocardiography
5.
IEEE Trans Biomed Eng ; 60(12): 3340-6, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23744664

ABSTRACT

Zigbee is expected to have an explosive growth in wireless medical monitoring systems because it possesses the advantages of low cost, safe power strength, and easy deployment. However, limited work focuses on solving the bottleneck issue at the Zigbee coordinator in a data-intensive system to guarantee transmission reliability of life-critical data. This paper proposes coordinator traffic diffusion (CTD) method to redirect excessive traffic from coordinator to the sink in electrocardiography (ECG) medical application. CTD router, which implements CTD design, automatically redirects ECG data traffic to the sink node without involving the coordinator, and thus reliable real-time ECG monitoring service can be delivered precisely. CTD design is tested in both TI CC2530 Zigbee platform and NS2 simulation. Experimental result demonstrates that a CTD design can assist routers in successfully delivering real-time ECG data samples reliably with the best transmission rate, 24 kb/s. This performance cannot be achieved by the original Zigbee design.


Subject(s)
Computer Communication Networks/instrumentation , Electrocardiography/instrumentation , Electrocardiography/methods , Signal Processing, Computer-Assisted/instrumentation , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...