Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Micromachines (Basel) ; 15(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38398898

ABSTRACT

This study explores the potential of laser-induced nano-photon-poration as a non-invasive technique for the intracellular delivery of micro/macromolecules at the single-cell level. This research proposes the utilization of gold-coated spiky polymeric nanoparticles (Au-PNPs) and gold nanorods (GNRs) to achieve efficient intracellular micro/macromolecule delivery at the single-cell level. By shifting the operating wavelength towards the near-infrared (NIR) range, the intracellular delivery efficiency and viability of Au-PNP-mediated photon-poration are compared to those using GNR-mediated intracellular delivery. Employing Au-PNPs as mediators in conjunction with nanosecond-pulsed lasers, a highly efficient intracellular delivery, while preserving high cell viability, is demonstrated. Laser pulses directed at Au-PNPs generate over a hundred hot spots per particle through plasmon resonance, facilitating the formation of photothermal vapor nanobubbles (PVNBs). These PVNBs create transient pores, enabling the gentle transfer of cargo from the extracellular to the intracellular milieu, without inducing deleterious effects in the cells. The optimization of wavelengths in the NIR region, coupled with low laser fluence (27 mJ/cm2) and nanoparticle concentrations (34 µg/mL), achieves outstanding delivery efficiencies (96%) and maintains high cell viability (up to 99%) across the various cell types, including cancer and neuronal cells. Importantly, sustained high cell viability (90-95%) is observed even 48 h post laser exposure. This innovative development holds considerable promise for diverse applications, encompassing drug delivery, gene therapy, and regenerative medicine. This study underscores the efficiency and versatility of the proposed technique, positioning it as a valuable tool for advancing intracellular delivery strategies in biomedical applications.

2.
Transl Res ; 263: 1-14, 2024 01.
Article in English | MEDLINE | ID: mdl-37558203

ABSTRACT

Early prognosis of cancer recurrence remains difficult partially due to insufficient and ineffective screening biomarkers or regimes. This study evaluated the rare circulating tumor microemboli (CTM) from liquid biopsy individually and together with circulating tumor cells (CTCs) and serum CEA/CA19-9 in a panel, on early prediction of colorectal cancer (CRC) recurrence. Stained CTCs/CTM were detected by a microfluidic chip-based automatic rare-cell imaging platform. ROC, AUC, Kaplan-Meier survival, and Cox proportional hazard models regarding 4 selected biomarkers were analyzed. The relative risk, odds ratio, predictive accuracy, and positive/negative predictive value of biomarkers individually and in combination, to predict CRC recurrence were assessed and preliminarily validated. The EpCAM+Hochest+CD45- CTCs/CTM could be found in all cancer stages, where more recurrences were observed in late-stage cases. Significant correlations between CTCs/CTM with metastatic stages and clinical treatment were illustrated. CA19-9 and CTM could be seen as independent risk factors in patient survivals, while stratified patients by grouped biomarkers on the Kaplan-Meier analyses presented more significant differences in predicting CRC recurrences. By monitoring the panel of selected biomarkers, disease progressions of 4 CRC patients during follow-up visits after first treatments within 3 years were predicted successfully. This study unveiled the value of rare CTM on clinical studies and a panel of selected biomarkers on predicting CRC recurrences in patients at the early time after medical treatment, in which the CTM and serum CA19-9 could be applied in clinical surveillance and CRC management to improve the accuracy.


Subject(s)
Colorectal Neoplasms , Neoplastic Cells, Circulating , Humans , CA-19-9 Antigen , Biomarkers, Tumor , Neoplasm Recurrence, Local , Prognosis , Neoplastic Cells, Circulating/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/therapy
3.
Small ; 20(17): e2307955, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38148312

ABSTRACT

Unraveling the intricacies between oxygen dynamics and cellular processes in the tumor microenvironment (TME) hinges upon precise monitoring of intracellular and intratumoral oxygen levels, which holds paramount significance. The majority of these reported oxygen nanoprobes suffer compromised lifetime and quantum yield when exposed to the robust ROS activities prevalent in TME, limiting their prolonged in vitro usability. Herein, the ruthenium-embedded oxygen nano polymeric sensor (Ru-ONPS) is proposed for precise oxygen gradient monitoring within the cellular environment and TME. Ru-ONPS (≈64±7 nm) incorporates [Ru(dpp)3]Cl2 dye into F-127 and crosslinks it with urea and paraformaldehyde, ensuring a prolonged lifetime (5.4 µs), high quantum yield (66.65 ± 2.43% in N2 and 49.80 ± 3.14% in O2), superior photostability (>30 min), and excellent stability in diverse environmental conditions. Based on the Stern-Volmer plot, the Ru-ONPS shows complete linearity for a wide dynamic range (0-23 mg L-1), with a detection limit of 10 µg mL-1. Confocal imaging reveals Ru-ONPS cellular uptake and intratumoral distribution. After 72 h, HCT-8 cells show 5.20±1.03% oxygen levels, while NIH3T3 cells have 7.07±1.90%. Co-culture spheroids display declining oxygen levels of 17.90±0.88%, 10.90±0.88%, and 5.10±1.18%, at 48, 120, and 216 h, respectively. Ru-ONPS advances cellular oxygen measurement and facilitates hypoxia-dependent metastatic research and therapeutic target identification.


Subject(s)
Oxygen , Polymers , Oxygen/metabolism , Humans , Polymers/chemistry , Tumor Microenvironment , Cell Line, Tumor , Animals , Ruthenium/chemistry , Mice , Biosensing Techniques/methods , Intracellular Space/metabolism
4.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37893282

ABSTRACT

This paper proposes a Swiss-roll-type mini-reformer employing a copper-zinc catalyst for high-efficient SRM process. Although the commercially available copper-zinc catalysts commonly used in cylindrical-type reformers provide decent conversion rates in the short term, their long-term durability still requires improvement, mainly due to temperature variations in the reformer, catalyst loading, and thermal sintering issues. This Swiss-roll-shaped mini-reformer is designed to improve thermal energy preservation/temperature uniformity by using dual spiral channels to improve the long-term durability while maintaining methanol-reforming efficiency. It was fabricated on a copper plate that was 80 mm wide, 80 mm long, and 4 mm high with spiral channels that were 2 mm deep, 4 mm wide, and 350 mm long. To optimize the design and reformer operation, the catalyst porosity, gas hourly speed velocity (GHSV), operation temperature, and fuel feeding rate are investigated. Swiss-roll-type reformers may require higher driving pressures but can provide better thermal energy preservation and temperature uniformity, posing a higher conversion rate for the same amount of catalyst when compared with other geometries. By carefully adjusting the catalyst bed porosity, locations, and catalyst loading amount as well as other conditions, an optimized gas hourly space velocity (GHSV) can be obtained (14,580 mL/g·h) and lead to not only a high conversion rate (96%) and low carbon monoxide generation rate (0.98%) but also a better long-term durability (decay from 96% to 88.12% after 60 h operation time) for SRM processes. The decay rate, 0.13%/h, after 60 h of operation, is five-folds lower than that (0.67%/h, 0.134%/h) of a commercial cylindrical-type fixed-bed reactor with a commercial catalyst.

5.
Lab Chip ; 23(21): 4636-4651, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37655799

ABSTRACT

Cell patterning is a powerful technique for the precise control and arrangement of cells, enabling detailed single-cell analysis with broad applications in therapeutics, diagnostics, and regenerative medicine. This study presents a novel and efficient technique that enables massively parallel high throughput cell patterning and precise delivery of small to large biomolecules into patterned cells. The innovative cell patterning device proposed in this study is a standalone, ultrathin 3D SU-8 micro-stencil membrane, with a thickness of 10 µm. It features an array of micro-holes ranging from 40 µm to 80 µm, spaced apart by 50 µm to 150 µm. By culturing cells on top of this SU-8 membrane, the technique achieves highly efficient cell patterns varying from single-cell to cell clusters on a Petri dish. Utilizing this technique, we have achieved a remarkable reproducible patterning efficiency for mouse fibroblast L929 (80.5%), human cervical SiHa (81%), and human neuroblastoma IMR32 (89.6%) with less than 1% defects in undesired areas. Single-cell patterning efficiency was observed to be highest at 75.8% for L929 cells. Additionally, we have demonstrated massively parallel high throughput uniform transfection of large biomolecules into live patterned cells by employing an array of titanium micro-rings (10 µm outer diameter, 3 µm inner diameter) activated through infrared light pulses. Successful delivery of a wide range of small to very large biomolecules, including propidium iodide (PI) dye (668.4 Da), dextran (3 kDa), siRNA (13.3 kDa), and ß-galactosidase enzyme (465 kDa), was accomplished in cell patterns for various cancer cells. Notably, our platform achieved exceptional delivery efficiencies of 97% for small molecules like PI dye and 84% for the enzyme, with corresponding high cell viability of 100% and 90%, respectively. Furthermore, the compact and reusable SU-8-based membrane device facilitates highly efficient cell patterning, transfection, and cell viability, making it a promising tool for diagnostics and therapeutic applications.

6.
Nanomedicine (Lond) ; 18(9): 743-754, 2023 04.
Article in English | MEDLINE | ID: mdl-37306216

ABSTRACT

Background: Boron neutron capture therapy (BNCT) is a promising cancer treatment that eliminates tumor cells by triggering high-energy radiation within cancer cells. Aim: In vivo evaluation of poly(vinyl alcohol)/boric acid crosslinked nanoparticles (PVA/BA NPs) for BNCT. Materials & methods: PVA/BA NPs were synthesized and intravenously injected into tumor-bearing mice for BNCT. Results: The in vitro boron uptake of PVA/BA NPs in tumor cells was 70-fold higher than the required boron uptake for successful BNCT. In an in vivo study, PVA/BA NPs showed a 44.29% reduction in tumor size compared with clinically used boronophenylalanine for oral cancer in a murine model. Conclusion: PVA/BA NPs exhibited effective therapeutic results for oral cancer treatments in BNCT.


Subject(s)
Boron Neutron Capture Therapy , Mouth Neoplasms , Nanoparticles , Animals , Mice , Boron Neutron Capture Therapy/methods , Mouth Neoplasms/radiotherapy , Disease Models, Animal , Chemical Engineering , Male
7.
Small ; 19(40): e2303391, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37267938

ABSTRACT

A hybrid composite of organic-inorganic semiconductor nanomaterials with atomic Au clusters at the interface decoration (denoted as PF3T@Au-TiO2 ) is developed for visible-light-driven H2 production via direct water splitting. With a strong electron coupling between the terthiophene groups, Au atoms and the oxygen atoms at the heterogeneous interface, significant electron injection from the PF3T to TiO2 occurs leading to a quantum leap in the H2 production yield (18 578 µmol g-1 h-1 ) by ≈39% as compared to that of the composite without Au decoration (PF3T@TiO2 , 11 321 µmol g-1 h-1 ). Compared to the pure PF3T, such a result is 43-fold improved and is the best performance among all the existing hybrid materials in similar configurations. With robust process control via industrially applicable methods, it is anticipated that the findings and proposed methodologies can accelerate the development of high-performance eco-friendly photocatalytic hydrogen production technologies.

8.
Sens Actuators B Chem ; 393: 134172, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37363301

ABSTRACT

Rapid and sensitive diagnostics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is of utmost importance to control the widespread coronavirus disease 2019 (COVID-19) upsurge. This study demonstrated a novel one-pot surface-enhanced Raman scattering (SERS) based immunoassay to detect SARS-CoV-2, without any washing process using a portable Raman spectrometer. The SERS-immune assay was designed using a regular digital versatile disk (DVD) substrate integrated with Raman reporter labeled silver nanoparticles for double clamping effects. The disks were molded to form nanopillar arrays and coated with silver film to enhance the sensitivity of immunoassay. The SERS platform demonstrated a limit of detection (LoD) up to 50 pg mL-1 for SARS-CoV-2 spike protein and virus-like-particle (VLP) protein in phosphate buffer saline within a turnaround time of 20 mins. Moreover, VLP protein spiked in untreated saliva achieved an LoD of 400 pg mL-1, providing a cycle threshold (Ct) value range of 30-32, closer to reverse transcription-polymerase chain reaction (RT-PCR) results (35-40) and higher than the commercial rapid antigen tests, ranging from 25 to 28. Therefore, the developed one-pot SERS based biosensor exhibited highly sensitive and rapid detection of SARS-CoV-2, which could be a potential point-of-care platform for early and cost-effective diagnosis of the COVID-19 virus.

9.
ACS Macro Lett ; 12(5): 570-576, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37053545

ABSTRACT

Herein, this work aims to directly visualize the morphological evolution of the controlled self-assembly of star-block polystyrene-block-polydimethylsiloxane (PS-b-PDMS) thin films via in situ transmission electron microscopy (TEM) observations. With an environmental chip, possessing a built-in metal wire-based microheater fabricated by the microelectromechanical system (MEMS) technique, in situ TEM observations can be conducted under low-dose conditions to investigate the development of film-spanning perpendicular cylinders in the block copolymer (BCP) thin films via a self-alignment process. Owing to the free-standing condition, a symmetric condition of the BCP thin films can be formed for thermal annealing under vacuum with neutral air surface, whereas an asymmetric condition can be formed by an air plasma treatment on one side of the thin film that creates an end-capped neutral layer. A systematic comparison of the time-resolved self-alignment process in the symmetric and asymmetric conditions can be carried out, giving comprehensive insights for the self-alignment process via the nucleation and growth mechanism.

10.
Analyst ; 148(9): 2045-2057, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36975995

ABSTRACT

Temperature governs the reactivity of a wide range of biomolecules in the cellular environment dynamically. The complex cellular pathways and molecules in solid tumors substantially produce temperature gradients in the tumor microenvironment (TME). Hence, visualization of these temperature gradients at the cellular level would give physiologically relevant spatio-temporal information about solid tumors. This study used fluorescent polymeric nano-thermometers (FPNTs) to measure the intratumor temperature in co-cultured 3D tumor spheroids. A temperature-sensitive rhodamine-B dye and Pluronic F-127 were conjugated through hydrophobic and hydrophobic interactions and then cross-linked with urea-paraformaldehyde resins to form the FPNTs. The characterization results exhibit monodisperse nanoparticles (166 ± 10 nm) with persistent fluorescence. The FPNTs exhibit a linear response with a wide temperature sensing range (25-100 °C) and are stable toward pH, ionic strength, and oxidative stress. FPNTs were utilized to monitor the temperature gradient in co-cultured 3D tumor spheroids and the temperature difference between the core (34.9 °C) and the periphery (37.8 °C) was 2.9 °C. This investigation demonstrates that the FPNTs have great stability, biocompatibility, and high intensity in a biological medium. The usage of FPNTs as a multifunctional adjuvant may demonstrate the dynamics of the TME and they may be suitable candidates to examine thermoregulation in tumor spheroids.


Subject(s)
Nanoparticles , Neoplasms , Humans , Temperature , Fluorescent Dyes/chemistry , Thermometers , Nanoparticles/chemistry , Spheroids, Cellular , Tumor Microenvironment
11.
Micromachines (Basel) ; 13(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36296147

ABSTRACT

Personalised drug delivery systems with the ability to offer real-time imaging and control release are an advancement in diagnostic and therapeutic applications. This allows for a tailored drug dosage specific to the patient with a release profile that offers the optimum therapeutic effect. Coupling this application with medical imaging capabilities, real-time contrast can be viewed to display the interaction with the host. Current approaches towards such novelty produce a drug burst release profile and contrasting agents associated with side effects as a result of poor encapsulation of these components. In this study, a 3D-printed drug delivery matrix with real-time imaging is engineered. Polycaprolactone (PCL) forms the bulk structure and encapsulates tetracycline hydrochloride (TH), an antibiotic drug and Iron Oxide Nanoparticles (IONP, Fe3O4), a superparamagnetic contrasting agent. Hot melt extrusion (HME) coupled with fused deposition modelling (FDM) is utilised to promote the encapsulation of TH and IONP. The effect of additives on the formation of micropores (10-20 µm) on the 3D-printed surface was investigated. The high-resolution process demonstrated successful encapsulation of both bioactive and nano components to present promising applications in drug delivery systems, medical imaging and targeted therapy.

12.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077367

ABSTRACT

We previously developed chicken interleukin-1ß (IL-1ß) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1ß (pIL-1ß) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1ß, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1ß. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1ß for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1ß may be used as an adjuvant for the formulation of pig vaccines.


Subject(s)
Chitosan , Vaccines , Alginates/chemistry , Animals , Chitosan/chemistry , Glucuronic Acid/chemistry , Glucuronic Acid/pharmacology , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Interleukin-1beta , Serum Albumin, Bovine/chemistry , Swine
13.
ACS Nano ; 16(8): 12686-12694, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35905494

ABSTRACT

This work aims to demonstrate a facile method for the controlled orientation of nanostructures of block copolymer (BCP) thin films. A simple diblock copolymer system, polystyrene-block-polydimethylsiloxane (PS-b-PDMS), is chosen to demonstrate vacuum-driven orientation for solving the notorious low-surface-energy problem of silicon-based BCP nanopatterning. By taking advantage of the pressure dependence of the surface tension of polymeric materials, a neutral air surface for the PS-b-PDMS thin film can be formed under a high vacuum degree (∼10-4 Pa), allowing the formation of the film-spanning perpendicular cylinders and lamellae upon thermal annealing. In contrast to perpendicular lamellae, a long-range lateral order for forming perpendicular cylinders can be efficiently achieved through the self-alignment mechanism for induced ordering from the top and bottom of the free-standing thin film.

14.
J Clin Med ; 11(9)2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35566526

ABSTRACT

Insufficient prognosis of local recurrence contributes to the poor progression-free survival rate and death in colorectal cancer (CRC) patients. Various biomarkers have been explored in predicting CRC recurrence. This study investigated the expressions of plasma/exosomal microRNA-21 (miR-21) in 113 CRC patients by qPCR, their values of predicting CRC recurrence, and the possibility to improve the prognostic efficacy in early CRC recurrence in stratified patients by combined biomarkers including circulating miR-21s, circulating tumour cells/microemboli (CTCs/CTM), and serum carcinoembryonic antigen (CEA)/carbohydrate antigen 19-9 (CA19-9). Expressions of plasma and exosomal miR-21s were significantly correlated (p < 0.0001) in all and late-stage patients, presenting similar correlations with other biomarkers. However, stage IV patients stratified by a high level of exosomal miR-21 and stage I to III patients stratified by a high level of plasma miR-21 displayed significantly worse survival outcomes in predicting CRC recurrence, suggesting their different values to predict CRC recurrence in stratified patients. Comparable and even better performances in predicting CRC recurrence in late-stage patients were found by CTCs/CTM from our blood samples as sensitive biomarkers. Improved prognosing efficacy in CRC recurrence and better outcomes to significantly differentiate recurrence in stratified patients could be obtained by analysing combined biomarkers.

15.
Mater Today Bio ; 13: 100222, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35243297

ABSTRACT

Single-neuron actions are the basis of brain function, as clinical sequelae, neuronal dysfunction or failure for most of the central nervous system (CNS) diseases and injuries can be identified via tracing single-neurons. The bulk analysis methods tend to miscue critical information by assessing the population-averaged outcomes. However, its primary requisite in neuroscience to analyze single-neurons and to understand dynamic interplay of neurons and their environment. Microfluidic systems enable precise control over nano-to femto-liter volumes via adjusting device geometry, surface characteristics, and flow-dynamics, thus facilitating a well-defined micro-environment with spatio-temporal control for single-neuron analysis. The microfluidic platform not only offers a comprehensive landscape to study brain cell diversity at the level of transcriptome, genome, and/or epigenome of individual cells but also has a substantial role in deciphering complex dynamics of brain development and brain-related disorders. In this review, we highlight recent advances of microfluidic devices for single-neuron analysis, i.e., single-neuron trapping, single-neuron dynamics, single-neuron proteomics, single-neuron transcriptomics, drug delivery at the single-neuron level, single axon guidance, and single-neuron differentiation. Moreover, we also emphasize limitations and future challenges of single-neuron analysis by focusing on key performances of throughput and multiparametric activity analysis on microfluidic platforms.

16.
Mater Today Bio ; 13: 100193, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35005598

ABSTRACT

Highly efficient intracellular delivery strategies are essential for developing therapeutic, diagnostic, biological, and various biomedical applications. The recent advancement of micro/nanotechnology has focused numerous researches towards developing microfluidic device-based strategies due to the associated high throughput delivery, cost-effectiveness, robustness, and biocompatible nature. The delivery strategies can be carrier-mediated or membrane disruption-based, where membrane disruption methods find popularity due to reduced toxicity, enhanced delivery efficiency, and cell viability. Among all of the membrane disruption techniques, the mechanoporation strategies are advantageous because of no external energy source required for membrane deformation, thereby achieving high delivery efficiencies and increased cell viability into different cell types with negligible toxicity. The past two decades have consequently seen a tremendous boost in mechanoporation-based research for intracellular delivery and cellular analysis. This article provides a brief review of the most recent developments on microfluidic-based mechanoporation strategies such as microinjection, nanoneedle arrays, cell-squeezing, and hydroporation techniques with their working principle, device fabrication, cellular delivery, and analysis. Moreover, a brief discussion of the different mechanoporation strategies integrated with other delivery methods has also been provided. Finally, the advantages, limitations, and future prospects of this technique are discussed compared to other intracellular delivery techniques.

17.
Biosens Bioelectron ; 197: 113740, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34785491

ABSTRACT

This study demonstrates a novel multi-functional microfluidic system, designated three dimensional Alternative Current Electrokinetic/Surface Enhanced Raman Scattering (3D-ACEK/SERS), which can concentrate bacteria from whole blood, identify bacterial species, and determine antibiotic susceptibilities of the bacteria rapidly. The system consists of a hybrid electrokinetic mechanism, integrating AC-electroosmosis (AC-EO) and dielectrophoresis (DEP) that allows thousand-fold concentration of bacteria, including S. aureus, Escherichia coli, and Chryseobacterium indologenes, in the center of an electrode with a wide range of working distance (hundreds to thousands of µm), while exclusion of blood cells through negative DEP forces. This microchip employs SERS assay to determine the identity of the concentrated bacteria in approximately 2 min with a limit of detection of 3 CFU/ml, 5 orders of magnitude lower than that using standard centrifugation-purification process. Finally, label-free antibiotic susceptibility testing has been successfully demonstrated on the platform using both antibiotic-sensitive and multidrug-resistant bacterial strains illustrating a potential utility of the system to clinical applications.


Subject(s)
Biosensing Techniques , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacteria , Spectrum Analysis, Raman
18.
Biomaterials ; 280: 121247, 2022 01.
Article in English | MEDLINE | ID: mdl-34801251

ABSTRACT

Microfluidic platforms gain popularity in biomedical research due to their attractive inherent features, especially in nanomaterials synthesis. This review critically evaluates the current state of the controlled synthesis of nanomaterials using microfluidic devices. We describe nanomaterials' screening in microfluidics, which is very relevant for automating the synthesis process for biomedical applications. We discuss the latest microfluidics trends to achieve noble metal, silica, biopolymer, quantum dots, iron oxide, carbon-based, rare-earth-based, and other nanomaterials with a specific size, composition, surface modification, and morphology required for particular biomedical application. Screening nanomaterials has become an essential tool to synthesize desired nanomaterials using more automated processes with high speed and repeatability, which can't be neglected in today's microfluidic technology. Moreover, we emphasize biomedical applications of nanomaterials, including imaging, targeting, therapy, and sensing. Before clinical use, nanomaterials have to be evaluated under physiological conditions, which is possible in the microfluidic system as it stimulates chemical gradients, fluid flows, and the ability to control microenvironment and partitioning multi-organs. In this review, we emphasize the clinical evaluation of nanomaterials using microfluidics which was not covered by any other reviews. In the future, the growth of new materials or modification in existing materials using microfluidics platforms and applications in a diversity of biomedical fields by utilizing all the features of microfluidic technology is expected.


Subject(s)
Nanostructures , Quantum Dots , Biopolymers , Lab-On-A-Chip Devices , Microfluidics/methods , Nanostructures/chemistry
19.
Cells ; 12(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36611946

ABSTRACT

In 1665, Robert Hooke published his revolutionary book Micrographia [...].


Subject(s)
Cognition , Microscopy
20.
Nanoscale ; 13(44): 18632-18646, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34734624

ABSTRACT

We report a one-pot facile synthesis of highly photoresponsive bovine serum albumin (BSA) templated bismuth-copper sulfide nanocomposites (BSA-BiZ/CuxS NCs, where BiZ represents in situ formed Bi2S3 and bismuth oxysulfides (BOS)). As-formed surface vacancies and BiZ/CuxS heterojunctions impart superior catalytic, photodynamic and photothermal properties. Upon near-infrared (NIR) irradiation, the BSA-BiZ/CuxS NCs exhibit broad-spectrum antibacterial activity, not only against standard multidrug-resistant (MDR) bacterial strains but also against clinically isolated MDR bacteria and their associated biofilms. The minimum inhibitory concentration of BSA-BiZ/CuxS NCs is 14-fold lower than that of BSA-CuxS NCs because their multiple heterojunctions and vacancies facilitated an amplified phototherapeutic response. As-prepared BSA-BiZ/CuxS NCs exhibited substantial biofilm inhibition (90%) and eradication (>75%) efficiency under NIR irradiation. Furthermore, MRSA-infected diabetic mice were immensely treated with BSA-BiZ/CuxS NCs coupled with NIR irradiation by destroying the mature biofilm on the wound site, which accelerated the wound healing process via collagen synthesis and epithelialization. We demonstrate that BSA-BiZ/CuxS NCs with superior antimicrobial activity and high biocompatibility hold great potential as an effective photosensitive agent for the treatment of biofilm-associated infections.


Subject(s)
Diabetes Mellitus, Experimental , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Catalysis , Mice , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...