Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Langmuir ; 38(2): 801-809, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-34951309

ABSTRACT

Surface-enhanced Raman scattering (SERS) has been a useful sensing technique, in which inelastic light scattering can be significantly enhanced by absorbing molecules onto rough metal surfaces or nanoparticles. Although many methods have been developed to prepare SERS substrates, it is still highly desirable and challenging to design SERS substrates, especially with highly ordered and controlled three-dimensional (3D) structures. In this work, we develop novel SERS substrates with regular volcano-shaped polymer structures using the versatile solvent on-film annealing method. Polystyrene (PS) nanospheres are first synthesized by surfactant-free emulsion polymerization and assembled on poly(methyl methacrylate) (PMMA) films. After annealing in acetic acid vapors, PMMA chains are selectively swollen and wet the surfaces of the PS nanospheres. By selectively removing the PS nanospheres using cyclohexane, volcano-shaped PMMA films can be obtained. Compared with flat PMMA films with water contact angles of ∼74°, volcano-shaped PMMA films exhibit higher water contact angles of ∼110° due to the sharp features and rough surfaces. The volcano-shaped PMMA films are then coated with gold nanoparticles (AuNPs) as SERS substrates. Using rhodamine 6G as the probe molecules, the SERS results show that the Raman signals of the volcano-shaped PMMA/AuNP hybrid substrates are much higher than those of the pristine PMMA films and PMMA films with AuNPs. For the volcano-shaped PMMA/AuNP hybrid substrates using 400 nm PS nanospheres, a high enhancement factor (EF) value of ∼1.12 × 105 with a detection limit of 10-8 M is obtained in a short integration time of 1 s. A linear calibration line with an R2 value of 0.918 is also established, demonstrating the ability to determine the concentrations of the analytes. This work offers significant insight into developing novel SERS substrates, which is crucial for improving the detection limits of analytes.

2.
Langmuir ; 36(33): 9780-9785, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32787116

ABSTRACT

Wavy patterns are interesting geometric patterns and commonly seen in nature, such as serpentine streams or snake tracks in the sand. Although many efforts have been devoted to fabricating artificial wavy structures, it remains a great challenge to obtain wavy structures with controllable curvatures and desired functional properties. Here, we present an unprecedented approach to generate wavy polymer structures by annealing electrospun core-shell fibers on polymer films. Polystyrene (PS)/poly(methyl methacrylate) (PMMA) core-shell fibers, produced via the viscosity-induced phase separation in the electrospinning process, are annealed on PMMA films using vapors of acetic acid, a selective solvent for PMMA but not for PS. After the swollen PMMA chains of the PMMA shells are shed, the revealed PS cores start to buckle, driven by the elastic force from the strain release, forming the wavy structures. The degrees of the buckling, measured by the curvatures and the amplitudes of the wavy structures, are controlled by the annealing times. Furthermore, fluorescent properties are selectively introduced to the wavy structures using pyrene solutions or pyrene-containing vapors, demonstrating the potential application as fluorescent wavy materials.

3.
ACS Appl Mater Interfaces ; 12(31): 35731-35739, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32633485

ABSTRACT

Although various strategies have been developed to prepare anisotropic polymeric particles, it remains challenging to fabricate monolayers of anisotropic polymeric particles, which can extend the applications of anisotropic particles. Here, we develop a novel and facile approach to fabricate monolayers of anisotropic polymeric particles. Monolayers of polystyrene (PS) microspheres with a mean diameter of 10 µm are deposited on glass substrates coated with poly(methyl methacrylate) films, followed by sequential selective solvent on-film annealing processes. Monolayers of anisotropic polymeric particles, such as the snowman-like PS particles, are successfully fabricated. Such unique structures possess the long-range ordering of monolayers (the structure factor) and the anisotropic geometry of individual particles (the form factor). The nanomechanical properties of the PS particles are also characterized using atomic force microscopy force volume measurements, showing a decrease in the Young's moduli of the PS particles owing to the looser packing of the polymer chains. This work provides the most facile and versatile strategy by far to fabricate monolayers of ordered anisotropic polymeric particles, which are inaccessible by other traditional means.

4.
Macromol Rapid Commun ; 39(23): e1800424, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30142232

ABSTRACT

Fibrillar materials have gained much attention recently because of their unique properties and potential applications. Although many methods have been developed to fabricate materials, it remains challenging to prepare fibrillar materials containing multicomponent materials or even with complex structures. Here, a facile strategy is developed to fabricate bamboo-shaped fibers by treating electrospun polymer core-shell fibers with solvent vapor annealing. Electrospun polystyrene (PS)/poly(methyl methacrylate) (PMMA) core-shell fibers are first prepared by electrospinning PS/PMMA blend solutions via a phase separation process. When the PS/PMMA core-shell fibers are annealed with the vapor of cyclohexane, which swells and delocalizes the PS domains selectively, the fibers transform into bamboo-shaped structures. The bamboo-shaped structures can be further examined by swelling and delocalizing the PMMA domains selectively, revealing the undulated PS structures. The thermal insulation properties of the fibers with bamboo-shaped structures are observed to be enhanced compared with the original polymer core-shell fibers.


Subject(s)
Acetates/chemistry , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Temperature , Molecular Structure , Particle Size , Solvents/chemistry , Surface Properties
5.
Langmuir ; 34(28): 8326-8332, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29924616

ABSTRACT

Anisotropic polymer particles have attracted great attention because of their unique properties and potential applications in various areas, such as microelectronics, drug delivery, and medical imaging. The fabrication and morphology control, especially the shape recovery, of anisotropic polymer particles, however, remains a challenging task. In this work, we develop a novel strategy to fabricate anisotropic polymer particles by thermally stretching poly(vinyl alcohol) (PVA) films embedding polystyrene (PS) microspheres using a weight. Depending on the preannealing condition, anisotropic PS particles with two different shapes, sharp-headed and blunt-headed PS particles, can be obtained. The PVA films can be selectively removed by isopropanol/water, releasing the anisotropic PS particles. By adding tetrahydrofuran (THF), a good solvent for PS, into the PS particle-containing solutions, the anisotropic particles gradually transform back to spheres to reduce the total interfacial energies. The shape recovery rates of the polymer particles can be controlled by the amount of the added THF. This work not only provides a simple and feasible route to fabricate anisotropic polymer particles but also contributes to a deeper understanding in the solvent-induced shape recovery process from anisotropic polymer particles to polymer spheres.

6.
Langmuir ; 34(25): 7472-7478, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29804459

ABSTRACT

Hierarchical structures are commonly observed in nature and possess unique properties. The fabrication of hierarchical structures with well-controlled sizes in different length scales, however, is still a great challenge. To further understand the morphologies and properties of the hierarchical structures, here we present a novel strategy to prepare hierarchical polymer structures by combining the modified breath figure method and the template method. Poly(methyl methacrylate) (PMMA) honeycomb films with regular micropores are first prepared using the modified breath figure method by dipping PMMA films into mixtures of chloroform and methanol. The polymer chains on the honeycomb films are then annealed and wetted into the nanopores of anodic aluminum oxide templates via capillary forces, resulting in the formation of hierarchical polymer structures. The morphologies of the polymer structures, which can be controlled by the molecular weights of the polymers and the concentrations of the polymer solutions, are characterized by scanning electron microscopy. The surface wettabilities of the polymer structures are also examined by water contact angle measurements, and the hierarchical structures are observed to be more hydrophobic than the flat films and honeycomb films. This work not only provides a feasible approach to fabricate hierarchical polymer structures with controlled sizes but also gives a better understanding of the relationship between surface morphologies and properties.

7.
Langmuir ; 33(43): 12300-12305, 2017 10 31.
Article in English | MEDLINE | ID: mdl-28984460

ABSTRACT

Designing anisotropic particles of various shapes draws great attention to scientists nowadays. We develop a facile and simple method to fabricate anisotropic polymer particles from spherical polymer particles. Poly(vinyl alcohol) (PVA) films spin-coated with polystyrene (PS) microspheres are confined on both sides using binder clips and are heated above the glass-transition temperatures of the polymers. During the thermal annealing process, the PS particles sink into the PVA films and transform to anisotropic particles. Depending on the distances to the bound regions, oblate spheroid PS particles or prolate spheroid particles with different aspect ratios can be obtained. The transformation of the particles is mainly driven by the stretching forces and the squeezing forces. The main advantage of this method is that anisotropic particles with different shapes can be fabricated simultaneously on a single film. We expect that this novel method can be helpful to various fields including colloids science, suspension rheology, and drug delivery.

8.
Macromol Rapid Commun ; 38(5)2017 Mar.
Article in English | MEDLINE | ID: mdl-28105783

ABSTRACT

Electrospun core-shell fibers have great potentials in many areas, such as tissue engineering, drug delivery, and organic solar cells. Although many core-shell fibers have been prepared and studied, the morphology transformation of core-shell fibers have been rarely studied. In this work, the morphology evolution of electrospun core-shell polymer fibers driven by the Plateau-Rayleigh instability is investigated. Polystyrene/poly(methyl methacrylate) (PS/PMMA) core-shell fibers are first prepared by using blend solutions and a single axial electrospinning setup. After PS/PMMA core-shell fibers are annealed on a PS film, the fibers undulate and sink into the polymer film, forming core-shell hemispheres. The evolution process, which can be observed in situ by optical microscopy, is mainly driven by achieving lower surface and interfacial energies. The morphologies of the transformed structures can be confirmed by a selective removal technique, and polymer microbowls can be obtained.


Subject(s)
Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Particle Size , Surface Properties
9.
Macromol Rapid Commun ; 37(22): 1825-1831, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27611838

ABSTRACT

Anisotropic polymer particles such as Janus particles have attracted significant attention in recent years because of their unique properties and unusual self-assembly behavior. Most anisotropic polymer particles synthesized so far, however, only have different chemical regions compartmentalized on the particles. It remains a great challenge to fabricate anisotropic polymer particles with different shapes within a single particle. A novel approach is developed to prepare anisotropic polymer particles that contain two hemispheres with different curvatures by annealing polystyrene microspheres on poly(vinyl alcohol) films. During the annealing process, the polymer microspheres gradually sink into the polymer films and transform to asymmetric polymer particles, driven by the surface and interfacial tensions of the polymers. Selective removal techniques are also used to confirm the morphologies of the asymmetric particles.

10.
ACS Macro Lett ; 4(7): 721-724, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-35596495

ABSTRACT

Polymer microspheres have been widely investigated because of their applications in areas such as drug delivery, latex diagnostics, and affinity bioseparators. The effect of annealing on polymer microspheres, however, has been rarely studied. In this work, we demonstrate the morphology transformation of polystyrene (PS) microspheres annealed thermally on poly(methyl methacrylate) (PMMA) films. During the annealing process, the PS microspheres gradually sink into the PMMA films and transform into PS hemispheres, driven by the reduction of the surface and interfacial energies. The effect of the film thicknesses on the morphology transformation is also studied. In addition, porous PMMA films or PS hemispheres can be obtained by removing the PS or the PMMA domains of the polymer composites using cyclohexane or acetic acid, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...