Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Med Imaging (Bellingham) ; 11(3): 033501, 2024 May.
Article in English | MEDLINE | ID: mdl-38756437

ABSTRACT

Purpose: We aim to determine the combination of X-ray spectrum and detector scintillator thickness that maximizes the detectability of microcalcification clusters in dedicated cone-beam breast CT. Approach: A cascaded linear system analysis was implemented in the spatial frequency domain and was used to determine the detectability index using numerical observers for the imaging task of detecting a microcalcification cluster with 0.17 mm diameter calcium carbonate spheres. The analysis considered a thallium-doped cesium iodide scintillator coupled to a complementary metal-oxide semiconductor detector and an analytical filtered-back-projection reconstruction algorithm. Independent system parameters considered were the scintillator thickness, applied X-ray tube voltage, and X-ray beam filtration. The combination of these parameters that maximized the detectability index was considered optimal. Results: Prewhitening, nonprewhitening, and nonprewhitening with eye filter numerical observers indicate that the combination of 0.525 to 0.6 mm thick scintillator, 70 kV, and 0.25 to 0.4 mm added copper filtration maximized the detectability index at a mean glandular dose (MGD) of 4.5 mGy. Conclusion: Using parallel cascade systems' analysis, the combination of parameters that could maximize the detection of microcalcifications was identified. The analysis indicates that a harder beam than that used in current practice may be beneficial for the task of detecting microcalcifications at an MGD suitable for breast cancer screening.

2.
Sci Rep ; 14(1): 319, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172250

ABSTRACT

The feasibility of full-scan, offset-detector geometry cone-beam CT has been demonstrated for several clinical applications. For full-scan acquisition with offset-detector geometry, data redundancy from complementary views can be exploited during image reconstruction. Envisioning an upright breast CT system, we propose to acquire short-scan data in conjunction with offset-detector geometry. To tackle the resulting incomplete data, we have developed a self-supervised attenuation field network (AFN). AFN leverages the inherent redundancy of cone-beam CT data through coordinate-based representation and known imaging physics. A trained AFN can query attenuation coefficients using their respective coordinates or synthesize projection data including the missing projections. The AFN was evaluated using clinical cone-beam breast CT datasets (n = 50). While conventional analytical and iterative reconstruction methods failed to reconstruct the incomplete data, AFN reconstruction was not statistically different from the reference reconstruction obtained using full-scan, full-detector data in terms of image noise, image contrast, and the full width at half maximum of calcifications. This study indicates the feasibility of a simultaneous short-scan and offset-detector geometry for dedicated breast CT imaging. The proposed AFN technique can potentially be expanded to other cone-beam CT applications.


Subject(s)
Cone-Beam Computed Tomography , Tomography, X-Ray Computed , Phantoms, Imaging , Cone-Beam Computed Tomography/methods , Tomography, X-Ray Computed/methods , Radionuclide Imaging , Algorithms , Image Processing, Computer-Assisted/methods
3.
Tomography ; 9(6): 2039-2051, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37987346

ABSTRACT

Dedicated cone-beam breast computed tomography (CBBCT) is an emerging modality and provides fully three-dimensional (3D) images of the uncompressed breast at an isotropic voxel resolution. In an effort to translate this modality to breast cancer screening, advanced image reconstruction methods are being pursued. Since radiographic breast density is an established risk factor for breast cancer and CBBCT provides volumetric data, this study investigates the reproducibility of the volumetric glandular fraction (VGF), defined as the proportion of fibroglandular tissue volume relative to the total breast volume excluding the skin. Four image reconstruction methods were investigated: the analytical Feldkamp-Davis-Kress (FDK), a compressed sensing-based fast, regularized, iterative statistical technique (FRIST), a fully supervised deep learning approach using a multi-scale residual dense network (MS-RDN), and a self-supervised approach based on Noise-to-Noise (N2N) learning. Projection datasets from 106 women who participated in a prior clinical trial were reconstructed using each of these algorithms at a fixed isotropic voxel size of (0.273 mm3). Each reconstructed breast volume was segmented into skin, adipose, and fibroglandular tissues, and the VGF was computed. The VGF did not differ among the four reconstruction methods (p = 0.167), and none of the three advanced image reconstruction algorithms differed from the standard FDK reconstruction (p > 0.862). Advanced reconstruction algorithms developed for low-dose CBBCT reproduce the VGF to provide quantitative breast density, which can be used for risk estimation.


Subject(s)
Breast Neoplasms , Cone-Beam Computed Tomography , Female , Humans , Reproducibility of Results , Phantoms, Imaging , Cone-Beam Computed Tomography/methods , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods
4.
Med Phys ; 50(3): 1406-1417, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36427332

ABSTRACT

BACKGROUND: Dedicated cone-beam breast computed tomography (CBBCT) using short-scan acquisition is being actively investigated to potentially reduce the radiation dose to the breast. This would require determining the optimal x-ray source trajectory for such short-scan acquisition. PURPOSE: To quantify the projection angle-dependent normalized glandular dose coefficient ( D g N C T $Dg{N^{CT}}$ ) in CBBCT, referred to as angular D g N C T $Dg{N^{CT}}$ , so that the x-ray ray source trajectory that minimizes the radiation dose to the breast for short-scan acquisition can be determined. MATERIALS AND METHODS: A cohort of 75 CBBCT clinical datasets was segmented and used to generate three breast models - (I) patient-specific breast with heterogeneous fibroglandular tissue distribution and real breast shape, (II) patient-specific breast shape with homogeneous tissue distribution and matched fibroglandular weight fraction, and (III) homogeneous semi-ellipsoidal breast with patient-specific breast dimensions and matched fibroglandular weight fraction, which corresponds to the breast model used in current radiation dosimetry protocols. For each clinical dataset, the angular D g N C T $Dg{N^{CT}}$ was obtained at 10 discrete angles, spaced 36° apart, for full-scan, circular, x-ray source trajectory from Monte Carlo simulations. Model III is used for validating the Monte Carlo simulation results. Models II and III are used to determine if breast shape contributes to the observed trends in angular D g N C T $Dg{N^{CT}}$ . A geometry-based theory in conjunction with center-of-mass ( C O M $COM$ ) based distribution analysis is used to explain the projection angle-dependent variation in angular D g N C T $Dg{N^{CT}}$ . RESULTS: The theoretical model predicted that the angular D g N C T $Dg{N^{CT}}$ will follow a sinusoidal pattern and the amplitude of the sinusoid increases when the center-of-mass of fibroglandular tissue ( C O M f $CO{M_f}$ ) is farther from the center-of-mass of the breast ( C O M b $CO{M_b}$ ). It also predicted that the angular D g N C T $Dg{N^{CT}}$ will be minimized at x-ray source positions complementary to the C O M f $CO{M_f}$ . The C O M f $CO{M_f}$ was superior to the C O M b $CO{M_b}$ in 80% (60/75) of the breasts. From Monte Carlo simulations and for homogeneous breasts (models II and III), the deviation in breast shape from a semi-ellipsoid had minimal effect on angular D g N C T $Dg{N^{CT}}$ and showed less than 4% variation. From Monte Carlo simulations and for model I, as predicted by our theory, the angular D g N C T $Dg{N^{CT}}$ followed a sinusoidal pattern with maxima and minima at x-ray source positions superior and inferior to the breast, respectively. For model I, the projection angle-dependent variation in angular D g N C T $Dg{N^{CT}}$ was 16.4%. CONCLUSION: The heterogeneous tissue distribution affected the angular D g N C T $Dg{N^{CT}}$ more than the breast shape. For model I, the angular D g N C T $Dg{N^{CT}}$ was lowest when the x-ray source was inferior to the breast. Hence, for short-scan CBBCT acquisition with C O M b $CO{M_b}$ aligned with axis-of-rotation, an x-ray source trajectory inferior to the breast is preferable and such an acquisition spanning 205° can potentially reduce the mean glandular dose by up to 52%.


Subject(s)
Breast , Mammography , Humans , Mammography/methods , Phantoms, Imaging , Breast/diagnostic imaging , Cone-Beam Computed Tomography/methods , Radiometry/methods , Monte Carlo Method , Radiation Dosage
5.
Phys Med Biol ; 67(8)2022 04 07.
Article in English | MEDLINE | ID: mdl-35316793

ABSTRACT

Objective.A dedicated cone-beam breast computed tomography (BCT) using a high-resolution, low-noise detector operating in offset-detector geometry has been developed. This study investigates the effects of varying detector offsets and image reconstruction algorithms to determine the appropriate combination of detector offset and reconstruction algorithm.Approach.Projection datasets (300 projections in 360°) of 30 breasts containing calcified lesions that were acquired using a prototype cone-beam BCT system comprising a 40 × 30 cm flat-panel detector with 1024 × 768 detector pixels were reconstructed using Feldkamp-Davis-Kress (FDK) algorithm and served as the reference. The projection datasets were retrospectively truncated to emulate cone-beam datasets with sinograms of 768×768 and 640×768 detector pixels, corresponding to 5 cm and 7.5 cm lateral offsets, respectively. These datasets were reconstructed using the FDK algorithm with appropriate weights and an ASD-POCS-based Fast, total variation-Regularized, Iterative, Statistical reconstruction Technique (FRIST), resulting in a total of 4 offset-detector reconstructions (2 detector offsets × 2 reconstruction methods). Signal difference-to-noise ratio (SDNR), variance, and full-width at half-maximum (FWHM) of calcifications in two orthogonal directions were determined from all reconstructions. All quantitative measurements were performed on images in units of linear attenuation coefficient (1/cm).Results.The FWHM of calcifications did not differ (P > 0.262) among reconstruction algorithms and detector formats, implying comparable spatial resolution. For a chosen detector offset, the FRIST algorithm outperformed FDK in terms of variance and SDNR (P < 0.0001). For a given reconstruction method, the 5 cm offset provided better results.Significance.This study indicates the feasibility of using the compressed sensing-based, FRIST algorithm to reconstruct sinograms from offset-detectors. Among the reconstruction methods and detector offsets studied, FRIST reconstructions corresponding to a 30 cm × 30 cm with 5 cm lateral offset, achieved the best performance. A clinical prototype using such an offset geometry has been developed and installed for clinical trials.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Retrospective Studies
6.
Med Phys ; 48(3): 1079-1088, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501686

ABSTRACT

PURPOSE: A clinical-prototype, dedicated, cone-beam breast computed tomography (CBBCT) system with offset detector is undergoing clinical evaluation at our institution. This study is to estimate the normalized glandular dose coefficients ( DgN CT ) that provide air kerma-to-mean glandular dose conversion factors using Monte Carlo simulations. MATERIALS AND METHODS: The clinical prototype CBBCT system uses 49 kV x-ray spectrum with 1.39 mm 1st half-value layer thickness. Monte Carlo simulations (GATE, version 8) were performed with semi-ellipsoidal, homogeneous breasts of various fibroglandular weight fractions ( f g = 0.01 , 0.15 , 0.5 , 1 ) , chest wall diameters ( d = 8 , 10 , 14 , 18 , 20  cm), and chest wall to nipple length ( l = 0.75 d ), aligned with the axis of rotation (AOR) located at 65 cm from the focal spot to determine the DgN CT . Three geometries were considered - 40 × 30 -cm detector with no offset that served as reference and corresponds to a clinical CBBCT system, 30 × 30 -cm detector with 5 cm offset, and a 30 × 30 -cm detector with 10 cm offset. RESULTS: For 5 cm lateral offset, the DgN CT ranged 0.177 - 0.574  mGy/mGy and reduction in DgN CT with respect to reference geometry was observed only for 18 cm ( 6.4 % ± 0.23 % ) and 20 cm ( 9.6 % ± 0.22 % ) diameter breasts. For the 10 cm lateral offset, the DgN CT ranged 0.221 - 0.581  mGy/mGy and reduction in DgN CT was observed for all breast diameters. The reduction in DgN CT was 1.4 % ± 0.48 % , 7.1 % ± 0.13 % , 17.5 % ± 0.19 % , 25.1 % ± 0.15 % , and 27.7 % ± 0.08 % for 8, 10, 14, 18, and 20 cm diameter breasts, respectively. For a given breast diameter, the reduction in DgN CT with offset-detector geometries was not dependent on f g . Numerical fits of DgN CT d , l , f g were generated for each geometry. CONCLUSION: The DgN CT and the numerical fit, D g N CT d , l , f g would be of benefit for current CBBCT systems using the reference geometry and for future generations using offset-detector geometry. There exists a potential for radiation dose reduction with offset-detector geometry, provided the same technique factors as the reference geometry are used, and the image quality is clinically acceptable.


Subject(s)
Breast Neoplasms , Breast , Mammography , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/radiotherapy , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiometry
7.
Sci Rep ; 10(1): 21111, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273541

ABSTRACT

To develop and investigate a deep learning approach that uses sparse-view acquisition in dedicated breast computed tomography for radiation dose reduction, we propose a framework that combines 3D sparse-view cone-beam acquisition with a multi-slice residual dense network (MS-RDN) reconstruction. Projection datasets (300 views, full-scan) from 34 women were reconstructed using the FDK algorithm and served as reference. Sparse-view (100 views, full-scan) projection data were reconstructed using the FDK algorithm. The proposed MS-RDN uses the sparse-view and reference FDK reconstructions as input and label, respectively. Our MS-RDN evaluated with respect to fully sampled FDK reference yields superior performance, quantitatively and visually, compared to conventional compressed sensing methods and state-of-the-art deep learning based methods. The proposed deep learning driven framework can potentially enable low dose breast CT imaging.


Subject(s)
Algorithms , Breast/diagnostic imaging , Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Female , Humans , Linear Models
8.
Biomed Phys Eng Express ; 6(6)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33377758

ABSTRACT

The purpose of this study is to quantify the impact of sparse-view acquisition in short-scan trajectories, compared to 360-degrees full-scan acquisition, on image quality measures in dedicated cone-beam breast computed tomography (BCT). Projection data from 30 full-scan (360-degrees; 300 views) BCT exams with calcified lesions were selected from an existing clinical research database. Feldkamp-Davis-Kress (FDK) reconstruction of the full-scan data served as the reference. Projection data corresponding to two short-scan trajectories, 204 and 270-degrees, which correspond to the minimum and maximum angular range achievable in a cone-beam BCT system were selected. Projection data were retrospectively sampled to provide 225, 180, and 168 views for 270-degrees short-scan, and 170 views for 204-degrees short-scan. Short-scans with 180 and 168 views in 270-degrees used non-uniform angular sampling. A fast, iterative, total variation-regularized, statistical reconstruction technique (FIRST) was used for short-scan image reconstruction. Image quality was quantified by variance, signal-difference to noise ratio (SDNR) between adipose and fibroglandular tissues, full-width at half-maximum (FWHM) of calcifications in two orthogonal directions, as well as, bias and root-mean-squared-error (RMSE) computed with respect to the reference full-scan FDK reconstruction. The median values of bias (8.6 × 10-4-10.3 × 10-4cm-1) and RMSE (6.8 × 10-6-9.8 × 10-6cm-1) in the short-scan reconstructions, computed with the full-scan FDK as the reference were close to, but not zero (P < 0.0001, one-sample median test). The FWHM of the calcifications in the short-scan reconstructions did not differ significantly from the reference FDK reconstruction (P > 0.118), except along the superior-inferior direction for the short-scan reconstruction with 168 views in 270-degrees (P = 0.046). The variance and SDNR from short-scan reconstructions were significantly improved compared to the full-scan FDK reconstruction (P < 0.0001). This study demonstrates the feasibility of the short-scan, sparse-view, compressed sensing-based iterative reconstruction. This study indicates that shorter scan times and reduced radiation dose without sacrificing image quality are potentially feasible.

9.
Phys Med ; 73: 117-124, 2020 May.
Article in English | MEDLINE | ID: mdl-32361156

ABSTRACT

Compressed sensing based iterative reconstruction algorithms for computed tomography such as adaptive steepest descent-projection on convex sets (ASD-POCS) are attractive due to their applicability in incomplete datasets such as sparse-view data and can reduce radiation dose to the patients while preserving image quality. Although IR algorithms reduce image noise compared to analytical Feldkamp-Davis-Kress (FDK) algorithm, they may generate artifacts, particularly along the periphery of the object. One popular solution is to use finer image-grid followed by down-sampling. This approach is computationally intensive but may be compensated by reducing the field of view. Our proposed solution is to replace the algebraic reconstruction technique within the original ASD-POCS by ordered subsets-simultaneous algebraic reconstruction technique (OS-SART) and with initialization using FDK image. We refer to this method as Fast, Iterative, TV-Regularized, Statistical reconstruction Technique (FIRST). In this study, we investigate FIRST for cone-beam dedicated breast CT with large image matrix. The signal-difference to noise ratio (SDNR), the difference of the mean value and the variance of adipose and fibroglandular tissues for both FDK and FIRST reconstructions were determined. With FDK serving as the reference, the root-mean-square error (RMSE), bias, and the full-width at half-maximum (FWHM) of microcalcifications in two orthogonal directions were also computed. Our results suggest that FIRST is competitive to the finer image-grid method with shorter reconstruction time. Images reconstructed using the FIRST do not exhibit artifacts and outperformed FDK in terms of image noise. This suggests the potential of this approach for radiation dose reduction in cone-beam breast CT.


Subject(s)
Artifacts , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted/methods , Radiation Dosage , Signal-To-Noise Ratio , Time Factors
10.
J Xray Sci Technol ; 28(3): 405-426, 2020.
Article in English | MEDLINE | ID: mdl-32333575

ABSTRACT

BACKGROUND: High-resolution, low-noise detectors with minimal dead-space at chest-wall could improve posterior coverage and microcalcification visibility in the dedicated cone-beam breast CT (CBBCT). However, the smaller field-of-view necessitates laterally-shifted detector geometry to enable optimizing the air-gap for x-ray scatter rejection. OBJECTIVE: To evaluate laterally-shifted detector geometry for CBBCT with clinical projection datasets that provide for anatomical structures and lesions. METHODS: CBBCT projection datasets (n = 17 breasts) acquired with a 40×30 cm detector (1024×768-pixels, 0.388-mm pixels) were truncated along the fan-angle to emulate 20.3×30 cm, 22.2×30 cm and 24.1×30 cm detector formats and correspond to 20, 120, 220 pixels overlap in conjugate views, respectively. Feldkamp-Davis-Kress (FDK) algorithm with 3 different weighting schemes were used for reconstruction. Visual analysis for artifacts and quantitative analysis of root-mean-squared-error (RMSE), absolute difference between truncated and 40×30 cm reconstructions (Diff), and its power spectrum (PSDiff) were performed. RESULTS: Artifacts were observed for 20.3×30 cm, but not for other formats. The 24.1×30 cm provided the best quantitative results with RMSE and Diff (both in units of µ, cm-1) of 4.39×10-3±1.98×10-3 and 4.95×10-4±1.34×10-4, respectively. The PSDiff (>0.3 cycles/mm) was in the order of 10-14µ2mm3 and was spatial-frequency independent. CONCLUSIONS: Laterally-shifted detector CBBCT with at least 220 pixels overlap in conjugate views (24.1×30 cm detector format) provides quantitatively accurate and artifact-free image reconstruction.


Subject(s)
Breast/diagnostic imaging , Cone-Beam Computed Tomography/methods , Mammography/methods , Algorithms , Breast Neoplasms/diagnostic imaging , Feasibility Studies , Female , Humans , Image Interpretation, Computer-Assisted , Retrospective Studies
11.
IEEE Trans Biomed Eng ; 67(9): 2443-2452, 2020 09.
Article in English | MEDLINE | ID: mdl-31899411

ABSTRACT

OBJECTIVE: To jointly optimize collimator design and image reconstruction algorithm in X-ray Fluorescence Computed Tomography (XFCT) for imaging low concentrations of high atomic number (Z) elements in small animal models. METHODS: Single pinhole (SPH) collimator and three types of multi-pinhole (MPH) collimators were evaluated. MPH collimators with 5, 7, and 9 pinholes using lead, stainless steel and brass were considered. A digital cylindrical phantom (0.5 mm3 voxels) of 25 mm diameter and 25 mm height with a central 5 mm diameter and 12.5 mm height cylindrical insert containing gold nanoparticles (2:1 insert: background concentration) was modeled. A 125 kVp, 2 mm Sn filtered x-ray spectrum (0.5 cGy/projection) for gold K-shell XFCT was considered. System matrices were implemented using analytical point spread functions (PSF) for each pinhole collimator. Poisson noise was added to the projection data (16 equiangular views) before image reconstruction using Maximum-Likelihood Expectation-Maximization (ML-EM) algorithm. Signal-present and signal-absent images were generated for the detection task performed by a channelized Hotelling observer (CHO) with 10 Dense Difference-of-Gaussian channels. The area under the curve (AUC) in receiver operating characteristic was used as the image quality metric. RESULTS: A stainless steel focusing type MPH with 7 pinholes and 20 iterations of ML-EM provided the highest AUC. CONCLUSION: MPH collimators outperformed SPH collimators for XFCT and consistently high AUCs were observed with focusing type MPH designs with 7 pinholes. SIGNIFICANCE: The combinations of collimator design and image reconstruction parameters that maximized AUC were identified, which could improve the performance of XFCT.


Subject(s)
Algorithms , Gold , Metal Nanoparticles , Animals , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , X-Rays
12.
J Med Imaging (Bellingham) ; 4(4): 045503, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29201940

ABSTRACT

Maintaining or even improving image quality while lowering patient dose is always the desire in clinical computed tomography (CT) imaging. Iterative reconstruction (IR) algorithms have been designed to allow for a reduced dose while maintaining or even improving an image. However, we have previously shown that the dose-saving capabilities allowed with IR are different for different clinical tasks. The channelized scanning linear observer (CSLO) was applied to study clinical tasks that combine detection and estimation when assessing CT image data. The purpose of this work is to illustrate the importance of task complexity when assessing dose savings and to move toward more realistic tasks when performing these types of studies. Human-observer validation of these methods will take place in a future publication. Low-contrast objects embedded in body-size phantoms were imaged multiple times and reconstructed by filtered back projection (FBP) and an IR algorithm. The task was to detect, localize, and estimate the size and contrast of low-contrast objects in the phantom. Independent signal-present and signal-absent regions of interest cropped from images were channelized by the dense-difference of Gauss channels for CSLO training and testing. Estimation receiver operating characteristic (EROC) curves and the areas under EROC curves (EAUC) were calculated by CSLO as the figure of merit. The one-shot method was used to compute the variance of the EAUC values. Results suggest that the IR algorithm studied in this work could efficiently reduce the dose by [Formula: see text] while maintaining an image quality comparable to conventional FBP reconstruction warranting further investigation using real patient data.

13.
J Med Imaging (Bellingham) ; 3(3): 035503, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27493982

ABSTRACT

The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment.

14.
Med Phys ; 41(7): 071910, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24989388

ABSTRACT

PURPOSE: A number of different techniques have been developed to reduce radiation dose in x-ray computed tomography (CT) imaging. In this paper, the authors will compare task-based measures of image quality of CT images reconstructed by two algorithms: conventional filtered back projection (FBP), and a new iterative reconstruction algorithm (IR). METHODS: To assess image quality, the authors used the performance of a channelized Hotelling observer acting on reconstructed image slices. The selected channels are dense difference Gaussian channels (DDOG).A body phantom and a head phantom were imaged 50 times at different dose levels to obtain the data needed to assess image quality. The phantoms consisted of uniform backgrounds with low contrast signals embedded at various locations. The tasks the observer model performed included (1) detection of a signal of known location and shape, and (2) detection and localization of a signal of known shape. The employed DDOG channels are based on the response of the human visual system. Performance was assessed using the areas under ROC curves and areas under localization ROC curves. RESULTS: For signal known exactly (SKE) and location unknown/signal shape known tasks with circular signals of different sizes and contrasts, the authors' task-based measures showed that a FBP equivalent image quality can be achieved at lower dose levels using the IR algorithm. For the SKE case, the range of dose reduction is 50%-67% (head phantom) and 68%-82% (body phantom). For the study of location unknown/signal shape known, the dose reduction range can be reached at 67%-75% for head phantom and 67%-77% for body phantom case. These results suggest that the IR images at lower dose settings can reach the same image quality when compared to full dose conventional FBP images. CONCLUSIONS: The work presented provides an objective way to quantitatively assess the image quality of a newly introduced CT IR algorithm. The performance of the model observers using the IR images was always higher than that seen using the FBP images in the authors' SKE and SKE location unknown detection tasks. To achieve a FBP-equivalent image quality in CT systems, the authors can lower the radiation dose by using this IR image reconstruction algorithm. Further studies are warranted using clinical data and human observer to validate these results for more complicated and realistic tasks.


Subject(s)
Algorithms , Radiation Dosage , Tomography, X-Ray Computed/methods , Area Under Curve , Head/diagnostic imaging , Humans , Models, Theoretical , Normal Distribution , Phantoms, Imaging , ROC Curve , Tomography, X-Ray Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...