Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(11): 13384-13398, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38454789

ABSTRACT

Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.

2.
Anal Chem ; 94(21): 7584-7593, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35588463

ABSTRACT

In this study, we examined the influence of functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) nanostructures decorated on the channel layer of an organic electrochemical transistor (OECT) for the detection of sweat cortisol, an adrenocorticosteroid stress hormone. The OECT device featured a bilayer channel confined by a PEDOT:polystyrenesulfonate (PSS) underlayer and a nanostructure-decorated upper layer engineered from the monomers EDOT-COOH and EDOT-EG3 through template-free electrochemical polymerization. This molecular design allowed antibody conjugation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysulfosuccinimide coupling through the carboxylic acid side chain, with EDOT-EG3 known to minimize nonspecific binding of biomolecules. We also engineered an OECT device having a channel area without any nanostructures to gain insight into the effect of the nanostructures on cortisol sensing. Our new nanostructure-embedded OECT device facilitated real-time detection of cortisol at concentrations ranging from 1 fg/mL to 1 µg/mL with a detection limit of 0.0088 fg/mL with good linearity (R2 = 0.9566), in addition to excellent selectivity toward cortisol among other structurally similar interfering compounds and high stability and reproducibility. With its rapid response for the detection of 100 ng/mL cortisol-spiked artificial sweat, this nanostructure-decorated OECT device has potential clinical practicality and utility in wearable sensors for future healthcare applications.


Subject(s)
Nanostructures , Sweat , Bridged Bicyclo Compounds, Heterocyclic , Hydrocortisone , Poly A , Polymers , Reproducibility of Results
3.
ACS Appl Bio Mater ; 4(3): 2354-2362, 2021 03 15.
Article in English | MEDLINE | ID: mdl-35014356

ABSTRACT

Although conductive bioelectronic interfaces (BEIs) can allow neural cell culturing while providing electrical stimulation (ES) to the nervous system, there are few simple approaches for the preparation of conductive BEIs with topographical features designed for cell manipulation. In this study, we developed a facile method for fabricating microwrinkled poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) films through spin-coating onto pre-elongated polydimethylsiloxane substrates. The microwrinkles of our PEDOT:PSS films pre-elongated by 20 and 40% had average widths of 6.47 ± 1.49 and 5.39 ± 1.53 µm, respectively. These microwrinkled PEDOT:PSS films promoted the directional ordering of neurite outgrowth of PC12 cells and displayed favorable biocompatibility and outstanding electrochemical properties for long-term ES treatment. When using this BEI platform, the level of PC12 gene expression of Neun was enhanced significantly after 5 days of culturing in differentiation media and under ES, in line with the decreased expression of early phase markers. Therefore, such readily fabricated microwrinkled PEDOT:PSS films are promising candidates for use as BEIs for tissue regenerative medicine.


Subject(s)
Biocompatible Materials/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Neuronal Outgrowth/drug effects , Polymers/pharmacology , Animals , Biocompatible Materials/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Cell Differentiation/drug effects , Electric Stimulation , Materials Testing , PC12 Cells , Particle Size , Polymers/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...