Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(11): 18508-18515, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859004

ABSTRACT

In this study, AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) processed via standard laser dicing (SLD) and multifocal laser stealth dicing (MFLSD) were investigated. Adopting the MFLSD technology would generate a roughing surface rather than the V-shaped grooves on the sidewall of 508 × 508 µm2 DUV-LEDs, which would reduce the forward operating voltage and increase the wall-plug efficiency, light output power, and far-field radiation patterns of these devices. In addition, the wavelength shift, far-field patterns, and light-tracing simulation results of the DUV-LEDs processed with SLD and MFLSD were clearly demonstrated and analyzed. Accordingly, it was observed that the MFLSD process provided more possibilities for photon escape to increase the light extraction efficiency (LEE) of DUV-LEDs, thus decreased the wavelength-redshift and junction temperature in DUV-LEDs. These results provide a reference for advanced nano-processing practices implemented during the fabrication of semiconductor devices.

2.
Opt Express ; 30(26): 47792-47800, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558698

ABSTRACT

In this study, deep-ultraviolet light-emitting diodes (DUV LEDs) with different chip sidewall geometries (CSGs) are investigated. The structure had two types of chip sidewall designs that combined DUV LEDs with the same p-GaN thickness. By comparing the differences of the characteristics such as the external quantum efficiency droops, light output power, light extraction efficiency (LEE), and junction temperature of these DUV LEDs, the self-heated effect and light-tracing simulation results have been clearly demonstrated to explain the inclined sidewalls that provide more possibility pathway for photons escape to increase the LEE of LEDs; thus, the DUV LEDs with the CSG presented improved performance. These results demonstrate the potential of CSG for DUV LED applications.

3.
Opt Express ; 30(23): 42241-42248, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36366681

ABSTRACT

This study fabricated high-voltage, low-current DUV-LEDs by connecting two devices. Due to better current spreading and the enhanced reflective mirror effect, high-voltage devices present a higher dynamic resistance, emission output power, wall-plug efficiency, external quantum efficiency, and view angle than single traditional devices. The study found that when the injection current was 320 mA, the maximum output power was exhibited at 47.1 mW in the HV sample. The maximum WPE and EQE of high-voltage DUV-LEDs were 2.46% and 5.48%, respectively. Noteworthily, the redshift wavelength shifted from 287.5 to 280.5 nm, less than the traditional device-from 278 to 282 nm. Further, due to the uniform emission patterns in high-voltage devices, the view angle presents 130 degrees at 100 mA input current. In this study, the high-voltage device showed more excellent properties than the traditional device. In particular, it presented a high potential application in high-voltage circuits, which can remove transformers to eliminate extra power consumption.

4.
Opt Express ; 30(10): 16827-16836, 2022 May 09.
Article in English | MEDLINE | ID: mdl-36221517

ABSTRACT

This study utilized thin p-GaN, indium tin oxide (ITO), and a reflective passivation layer (RPL) to improve the performance of deep ultra-violet light-emitting diodes (DUV-LEDs). RPL reflectors, which comprise HfO2/SiO2 stacks of different thickness to maintain high reflectance, were deposited on the DUV-LEDs with 40 nm-thick p-GaN and 12 nm-thick ITO thin films. Although the thin p-GaN and ITO films affect the operation voltage of DUV-LEDs, the highly reflective RPL structure improved the WPE and light extraction efficiency (LEE) of the DUV-LEDs, yielding the best WPE and LEE of 2.59% and 7.57%, respectively. The junction temperature of DUV-LEDs with thick p-GaN increased linearly with the injection current, while that of DUV-LEDs with thin p-GaN, thin ITO, and RPL was lower than that of the Ref-LED under high injection currents (> 500 mA). This influenced the temperature sensitive coefficients (dV/dT, dLOP/dT, and dWLP/dT). The thermal behavior of DUV-LEDs with p-GaN and ITO layers of different thicknesses with/without the RPL was discussed in detail.

5.
Opt Express ; 29(23): 37835-37844, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34808848

ABSTRACT

In this study, deep ultraviolet light-emitting diodes (DUV-LEDs) with a reflective passivation layer (RPL) were investigated. The RPL consists of HfO2/SiO2 stacks as distributed Bragg reflectors, which are deposited on two DUV-LEDs with different p-GaN thicknesses. The RPL structure improved the external quantum efficiency droops of the DUV-LEDs with thick and thin p-GaN, thereby increasing their light output power by 18.4% and 39.4% under injection current of 500 mA and by 17.9% and 37.9% under injection current of 1000 mA, respectively. The efficiency droops of the DUV-LEDs with and without the RPL with thick p-GaN were 20.1% and 19.1% and with thin p-GaN were 18.0% and 15.6%, respectively. The DUV-LEDs with the RPL presented improved performance. The above results demonstrate the potential for development of the RPLs for DUV-LED applications.

6.
Opt Express ; 23(14): 18156-65, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26191874

ABSTRACT

In this study, the thin-film vertical-type AlGaInP LEDs on Cu substrates were fabricated. By performing the epitaxial lift-off (ELO) process, the LED device can be transferred from GaAs to Cu substrate. Then the GaAs substrate was separated and the ELO-LED was completed. To overcome the drawback of crack formation in the epilayer during the ELO process, various patterned Cu substrates were designed. Moreover, the finite element method was used to simulate the stress distribution in the LED sample during the ELO process. From the simulation results, an optimum structure of patterned Cu substrate was obtained since its maximum stress can be confined to the chip edges and the stress was decreased significantly during the ELO process, resulting in an apparent reduction of crack generation after separating the GaAs substrate. This optimum patterned Cu substrate was employed for the fabrication of ELO-LED. In addition, the chemical etching process was also used to etch the GaAs substrate, and this device transferred to Cu substrate was denoted as CE-LED. Based on the measurements of device performances, the forward voltages (@350 mA) of the CE-LED and ELO-LED were measured to be 2.20 and 2.29 V, while the output powers (@350 mA) of these two devices were 49.9 and 48.2 mW, respectively. Furthermore, the surface temperatures (@350 mA) of these two samples were 46.9-48.3 and 45.2-47.0 °C, respectively. Obviously, the device characteristics of the ELO-LED are very similar to those of the CE-LED. It confirms that the design of patterned Cu substrate is very helpful to obtain the thin-film vertical-type AlGaInP LEDs. Additionally, via the ELO process, the separated GaAs substrate can be reused for production cost down.

7.
Opt Express ; 22 Suppl 7: A1862-7, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607500

ABSTRACT

A twice wafer-transfer technique can be used to fabricate high-brightness p-side-up thin-film AlGaInP-based light-emitting diodes (LEDs) with an indium-tin oxide (ITO) transparent conductive layer directly deposited on a GaP window layer, without using postannealing. The ITO layer can be used to improve light extraction, which enhances light output power. The p-side-up thin-film AlGaInP LED with an ITO layer exhibited excellent performance stability (e.g., emission wavelength and output power) as the injection current increased. This stability can be attributed to the following factors: 1) Refractive index matching, performed by introducing ITO between the epoxy and the GaP window layer enhances light extraction; and 2) The ITO layer is used as the current spreading layer to reduce the thermal accumulation in the epilayers.

SELECTION OF CITATIONS
SEARCH DETAIL
...