Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 50(12): 8057-8062, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37655886

ABSTRACT

PURPOSE: Transmission-target x-ray tubes generate more x-rays than reflection thick-target x-ray tubes. A transmission x-ray tube combined with radiosensitizers has a better radiation enhancement effect. This study investigated the feasibility of using a transmission x-ray tube with radiosensitizers in clinical radiotherapy and its effect on radiation dose enhancement. METHODS: This study used MCNP6.2 to simulate the model of a transmission x-ray tube and Co-60 beam.   The radiation enhancement effect of radiosensitizers was examined with iodine-127 (I-127), radioiodinated iododeoxyuridine (IUdR), and gold nanoparticles (GNPs). RESULTS: The study results showed that the dose enhancement factor (DEF) of the transmission x-ray tube with GNPs was 10.27, which was higher than that of I-127 (6.46) and IUdR (3.08). The DEF of the Co-60 beam with GNPs, I-127, and IUdR was 1.23, 1.19, and 1.2, respectively. The Auger electron flux of the transmission x-ray tube with GNPs was 1.19E+05 particles/cm2 . CONCLUSIONS: This study found that a transmission x-ray tube with appropriate radiosensitizers could produce a high rate of Auger electrons to fulfill the radiation enhancement effect, and this procedure has the potential to become a radiotherapy modality.


Subject(s)
Metal Nanoparticles , Radiation-Sensitizing Agents , Idoxuridine , X-Rays , Monte Carlo Method , Gold , Metal Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...